u_13 uchun yechish
u_{13}=\frac{u_{k}^{2}+1300}{90}
u_k uchun yechish (complex solution)
u_{k}=-\sqrt{90u_{13}-1300}
u_{k}=\sqrt{90u_{13}-1300}
u_k uchun yechish
u_{k}=\sqrt{90u_{13}-1300}
u_{k}=-\sqrt{90u_{13}-1300}\text{, }u_{13}\geq \frac{130}{9}
Baham ko'rish
Klipbordga nusxa olish
2u_{k}^{2}-180u_{13}+866\times 3+2=0
Tenglamaning ikkala tarafini 3 ga ko'paytirish.
2u_{k}^{2}-180u_{13}+2598+2=0
2598 hosil qilish uchun 866 va 3 ni ko'paytirish.
2u_{k}^{2}-180u_{13}+2600=0
2600 olish uchun 2598 va 2'ni qo'shing.
-180u_{13}+2600=-2u_{k}^{2}
Ikkala tarafdan 2u_{k}^{2} ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
-180u_{13}=-2u_{k}^{2}-2600
Ikkala tarafdan 2600 ni ayirish.
\frac{-180u_{13}}{-180}=\frac{-2u_{k}^{2}-2600}{-180}
Ikki tarafini -180 ga bo‘ling.
u_{13}=\frac{-2u_{k}^{2}-2600}{-180}
-180 ga bo'lish -180 ga ko'paytirishni bekor qiladi.
u_{13}=\frac{u_{k}^{2}}{90}+\frac{130}{9}
-2u_{k}^{2}-2600 ni -180 ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}