x uchun yechish
x=-\frac{4}{9}\approx -0,444444444
Grafik
Baham ko'rish
Klipbordga nusxa olish
3\left(3x-1\right)\left(3x+1\right)\times \frac{2}{3}-3\times 6x^{2}=\left(9x+3\right)\times 2
x qiymati -\frac{1}{3},\frac{1}{3} qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 3\left(3x-1\right)\left(3x+1\right) ga, 3,9x^{2}-1,3x-1 ning eng kichik karralisiga ko‘paytiring.
\left(9x-3\right)\left(3x+1\right)\times \frac{2}{3}-3\times 6x^{2}=\left(9x+3\right)\times 2
3 ga 3x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\left(27x^{2}-3\right)\times \frac{2}{3}-3\times 6x^{2}=\left(9x+3\right)\times 2
9x-3 ga 3x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
18x^{2}-2-3\times 6x^{2}=\left(9x+3\right)\times 2
27x^{2}-3 ga \frac{2}{3} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
18x^{2}-2-18x^{2}=\left(9x+3\right)\times 2
-18 hosil qilish uchun -3 va 6 ni ko'paytirish.
-2=\left(9x+3\right)\times 2
0 ni olish uchun 18x^{2} va -18x^{2} ni birlashtirish.
-2=18x+6
9x+3 ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
18x+6=-2
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
18x=-2-6
Ikkala tarafdan 6 ni ayirish.
18x=-8
-8 olish uchun -2 dan 6 ni ayirish.
x=\frac{-8}{18}
Ikki tarafini 18 ga bo‘ling.
x=-\frac{4}{9}
\frac{-8}{18} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}