x uchun yechish
x=\frac{1}{4}=0,25
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{2}{3}\times 6+\frac{2}{3}\left(-1\right)x-\frac{3}{4}\left(5-2x\right)=\frac{1}{6}\left(3-x\right)
\frac{2}{3} ga 6-x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{2\times 6}{3}+\frac{2}{3}\left(-1\right)x-\frac{3}{4}\left(5-2x\right)=\frac{1}{6}\left(3-x\right)
\frac{2}{3}\times 6 ni yagona kasrga aylantiring.
\frac{12}{3}+\frac{2}{3}\left(-1\right)x-\frac{3}{4}\left(5-2x\right)=\frac{1}{6}\left(3-x\right)
12 hosil qilish uchun 2 va 6 ni ko'paytirish.
4+\frac{2}{3}\left(-1\right)x-\frac{3}{4}\left(5-2x\right)=\frac{1}{6}\left(3-x\right)
4 ni olish uchun 12 ni 3 ga bo‘ling.
4-\frac{2}{3}x-\frac{3}{4}\left(5-2x\right)=\frac{1}{6}\left(3-x\right)
-\frac{2}{3} hosil qilish uchun \frac{2}{3} va -1 ni ko'paytirish.
4-\frac{2}{3}x-\frac{3}{4}\times 5-\frac{3}{4}\left(-2\right)x=\frac{1}{6}\left(3-x\right)
-\frac{3}{4} ga 5-2x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4-\frac{2}{3}x+\frac{-3\times 5}{4}-\frac{3}{4}\left(-2\right)x=\frac{1}{6}\left(3-x\right)
-\frac{3}{4}\times 5 ni yagona kasrga aylantiring.
4-\frac{2}{3}x+\frac{-15}{4}-\frac{3}{4}\left(-2\right)x=\frac{1}{6}\left(3-x\right)
-15 hosil qilish uchun -3 va 5 ni ko'paytirish.
4-\frac{2}{3}x-\frac{15}{4}-\frac{3}{4}\left(-2\right)x=\frac{1}{6}\left(3-x\right)
\frac{-15}{4} kasri manfiy belgini olib tashlash bilan -\frac{15}{4} sifatida qayta yozilishi mumkin.
4-\frac{2}{3}x-\frac{15}{4}+\frac{-3\left(-2\right)}{4}x=\frac{1}{6}\left(3-x\right)
-\frac{3}{4}\left(-2\right) ni yagona kasrga aylantiring.
4-\frac{2}{3}x-\frac{15}{4}+\frac{6}{4}x=\frac{1}{6}\left(3-x\right)
6 hosil qilish uchun -3 va -2 ni ko'paytirish.
4-\frac{2}{3}x-\frac{15}{4}+\frac{3}{2}x=\frac{1}{6}\left(3-x\right)
\frac{6}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{16}{4}-\frac{2}{3}x-\frac{15}{4}+\frac{3}{2}x=\frac{1}{6}\left(3-x\right)
4 ni \frac{16}{4} kasrga o‘giring.
\frac{16-15}{4}-\frac{2}{3}x+\frac{3}{2}x=\frac{1}{6}\left(3-x\right)
\frac{16}{4} va \frac{15}{4} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{1}{4}-\frac{2}{3}x+\frac{3}{2}x=\frac{1}{6}\left(3-x\right)
1 olish uchun 16 dan 15 ni ayirish.
\frac{1}{4}+\frac{5}{6}x=\frac{1}{6}\left(3-x\right)
\frac{5}{6}x ni olish uchun -\frac{2}{3}x va \frac{3}{2}x ni birlashtirish.
\frac{1}{4}+\frac{5}{6}x=\frac{1}{6}\times 3+\frac{1}{6}\left(-1\right)x
\frac{1}{6} ga 3-x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{1}{4}+\frac{5}{6}x=\frac{3}{6}+\frac{1}{6}\left(-1\right)x
\frac{3}{6} hosil qilish uchun \frac{1}{6} va 3 ni ko'paytirish.
\frac{1}{4}+\frac{5}{6}x=\frac{1}{2}+\frac{1}{6}\left(-1\right)x
\frac{3}{6} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{1}{4}+\frac{5}{6}x=\frac{1}{2}-\frac{1}{6}x
-\frac{1}{6} hosil qilish uchun \frac{1}{6} va -1 ni ko'paytirish.
\frac{1}{4}+\frac{5}{6}x+\frac{1}{6}x=\frac{1}{2}
\frac{1}{6}x ni ikki tarafga qo’shing.
\frac{1}{4}+x=\frac{1}{2}
x ni olish uchun \frac{5}{6}x va \frac{1}{6}x ni birlashtirish.
x=\frac{1}{2}-\frac{1}{4}
Ikkala tarafdan \frac{1}{4} ni ayirish.
x=\frac{2}{4}-\frac{1}{4}
2 va 4 ning eng kichik umumiy karralisi 4 ga teng. \frac{1}{2} va \frac{1}{4} ni 4 maxraj bilan kasrlarga aylantirib oling.
x=\frac{2-1}{4}
\frac{2}{4} va \frac{1}{4} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
x=\frac{1}{4}
1 olish uchun 2 dan 1 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}