Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Ashyoviy qism
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{2\left(3-2i\right)}{\left(3+2i\right)\left(3-2i\right)}
Ham hisoblagich, ham maxrajni maxraj kompleksiga murakkablash orqali ko'paytirish, 3-2i.
\frac{2\left(3-2i\right)}{3^{2}-2^{2}i^{2}}
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(3-2i\right)}{13}
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
\frac{2\times 3+2\times \left(-2i\right)}{13}
2 ni 3-2i marotabaga ko'paytirish.
\frac{6-4i}{13}
2\times 3+2\times \left(-2i\right) ichidagi ko‘paytirishlarni bajaring.
\frac{6}{13}-\frac{4}{13}i
\frac{6}{13}-\frac{4}{13}i ni olish uchun 6-4i ni 13 ga bo‘ling.
Re(\frac{2\left(3-2i\right)}{\left(3+2i\right)\left(3-2i\right)})
\frac{2}{3+2i}ning surat va maxrajini murakkab tutash maxraj 3-2i bilan ko‘paytiring.
Re(\frac{2\left(3-2i\right)}{3^{2}-2^{2}i^{2}})
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{2\left(3-2i\right)}{13})
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
Re(\frac{2\times 3+2\times \left(-2i\right)}{13})
2 ni 3-2i marotabaga ko'paytirish.
Re(\frac{6-4i}{13})
2\times 3+2\times \left(-2i\right) ichidagi ko‘paytirishlarni bajaring.
Re(\frac{6}{13}-\frac{4}{13}i)
\frac{6}{13}-\frac{4}{13}i ni olish uchun 6-4i ni 13 ga bo‘ling.
\frac{6}{13}
\frac{6}{13}-\frac{4}{13}i ning real qismi – \frac{6}{13}.