Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Ashyoviy qism
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{2\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}
Ham hisoblagich, ham maxrajni maxraj kompleksiga murakkablash orqali ko'paytirish, 1+i.
\frac{2\left(1+i\right)}{1^{2}-i^{2}}
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(1+i\right)}{2}
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
\frac{2\times 1+2i}{2}
2 ni 1+i marotabaga ko'paytirish.
\frac{2+2i}{2}
2\times 1+2i ichidagi ko‘paytirishlarni bajaring.
1+i
1+i ni olish uchun 2+2i ni 2 ga bo‘ling.
Re(\frac{2\left(1+i\right)}{\left(1-i\right)\left(1+i\right)})
\frac{2}{1-i}ning surat va maxrajini murakkab tutash maxraj 1+i bilan ko‘paytiring.
Re(\frac{2\left(1+i\right)}{1^{2}-i^{2}})
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{2\left(1+i\right)}{2})
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
Re(\frac{2\times 1+2i}{2})
2 ni 1+i marotabaga ko'paytirish.
Re(\frac{2+2i}{2})
2\times 1+2i ichidagi ko‘paytirishlarni bajaring.
Re(1+i)
1+i ni olish uchun 2+2i ni 2 ga bo‘ling.
1
1+i ning real qismi – 1.