Baholash
1+i
Ashyoviy qism
1
Baham ko'rish
Klipbordga nusxa olish
\frac{2\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}
Ham hisoblagich, ham maxrajni maxraj kompleksiga murakkablash orqali ko'paytirish, 1+i.
\frac{2\left(1+i\right)}{1^{2}-i^{2}}
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(1+i\right)}{2}
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
\frac{2\times 1+2i}{2}
2 ni 1+i marotabaga ko'paytirish.
\frac{2+2i}{2}
2\times 1+2i ichidagi ko‘paytirishlarni bajaring.
1+i
1+i ni olish uchun 2+2i ni 2 ga bo‘ling.
Re(\frac{2\left(1+i\right)}{\left(1-i\right)\left(1+i\right)})
\frac{2}{1-i}ning surat va maxrajini murakkab tutash maxraj 1+i bilan ko‘paytiring.
Re(\frac{2\left(1+i\right)}{1^{2}-i^{2}})
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{2\left(1+i\right)}{2})
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
Re(\frac{2\times 1+2i}{2})
2 ni 1+i marotabaga ko'paytirish.
Re(\frac{2+2i}{2})
2\times 1+2i ichidagi ko‘paytirishlarni bajaring.
Re(1+i)
1+i ni olish uchun 2+2i ni 2 ga bo‘ling.
1
1+i ning real qismi – 1.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}