h uchun yechish
h=12\sqrt{2}-12\approx 4,970562748
h=-12\sqrt{2}-12\approx -28,970562748
Baham ko'rish
Klipbordga nusxa olish
2=\frac{\left(12+h\right)^{2}}{12^{2}}
Har qanday son birga bo‘linganda, natija o‘zi chiqadi.
2=\frac{144+24h+h^{2}}{12^{2}}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(12+h\right)^{2} kengaytirilishi uchun ishlating.
2=\frac{144+24h+h^{2}}{144}
2 daraja ko‘rsatkichini 12 ga hisoblang va 144 ni qiymatni oling.
2=1+\frac{1}{6}h+\frac{1}{144}h^{2}
1+\frac{1}{6}h+\frac{1}{144}h^{2} natijani olish uchun 144+24h+h^{2} ning har bir ifodasini 144 ga bo‘ling.
1+\frac{1}{6}h+\frac{1}{144}h^{2}=2
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
1+\frac{1}{6}h+\frac{1}{144}h^{2}-2=0
Ikkala tarafdan 2 ni ayirish.
-1+\frac{1}{6}h+\frac{1}{144}h^{2}=0
-1 olish uchun 1 dan 2 ni ayirish.
\frac{1}{144}h^{2}+\frac{1}{6}h-1=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
h=\frac{-\frac{1}{6}±\sqrt{\left(\frac{1}{6}\right)^{2}-4\times \frac{1}{144}\left(-1\right)}}{2\times \frac{1}{144}}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \frac{1}{144} ni a, \frac{1}{6} ni b va -1 ni c bilan almashtiring.
h=\frac{-\frac{1}{6}±\sqrt{\frac{1}{36}-4\times \frac{1}{144}\left(-1\right)}}{2\times \frac{1}{144}}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{6} kvadratini chiqarish.
h=\frac{-\frac{1}{6}±\sqrt{\frac{1}{36}-\frac{1}{36}\left(-1\right)}}{2\times \frac{1}{144}}
-4 ni \frac{1}{144} marotabaga ko'paytirish.
h=\frac{-\frac{1}{6}±\sqrt{\frac{1+1}{36}}}{2\times \frac{1}{144}}
-\frac{1}{36} ni -1 marotabaga ko'paytirish.
h=\frac{-\frac{1}{6}±\sqrt{\frac{1}{18}}}{2\times \frac{1}{144}}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{36} ni \frac{1}{36} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
h=\frac{-\frac{1}{6}±\frac{\sqrt{2}}{6}}{2\times \frac{1}{144}}
\frac{1}{18} ning kvadrat ildizini chiqarish.
h=\frac{-\frac{1}{6}±\frac{\sqrt{2}}{6}}{\frac{1}{72}}
2 ni \frac{1}{144} marotabaga ko'paytirish.
h=\frac{\sqrt{2}-1}{\frac{1}{72}\times 6}
h=\frac{-\frac{1}{6}±\frac{\sqrt{2}}{6}}{\frac{1}{72}} tenglamasini yeching, bunda ± musbat. -\frac{1}{6} ni \frac{\sqrt{2}}{6} ga qo'shish.
h=12\sqrt{2}-12
\frac{-1+\sqrt{2}}{6} ni \frac{1}{72} ga bo'lish \frac{-1+\sqrt{2}}{6} ga k'paytirish \frac{1}{72} ga qaytarish.
h=\frac{-\sqrt{2}-1}{\frac{1}{72}\times 6}
h=\frac{-\frac{1}{6}±\frac{\sqrt{2}}{6}}{\frac{1}{72}} tenglamasini yeching, bunda ± manfiy. -\frac{1}{6} dan \frac{\sqrt{2}}{6} ni ayirish.
h=-12\sqrt{2}-12
\frac{-1-\sqrt{2}}{6} ni \frac{1}{72} ga bo'lish \frac{-1-\sqrt{2}}{6} ga k'paytirish \frac{1}{72} ga qaytarish.
h=12\sqrt{2}-12 h=-12\sqrt{2}-12
Tenglama yechildi.
2=\frac{\left(12+h\right)^{2}}{12^{2}}
Har qanday son birga bo‘linganda, natija o‘zi chiqadi.
2=\frac{144+24h+h^{2}}{12^{2}}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(12+h\right)^{2} kengaytirilishi uchun ishlating.
2=\frac{144+24h+h^{2}}{144}
2 daraja ko‘rsatkichini 12 ga hisoblang va 144 ni qiymatni oling.
2=1+\frac{1}{6}h+\frac{1}{144}h^{2}
1+\frac{1}{6}h+\frac{1}{144}h^{2} natijani olish uchun 144+24h+h^{2} ning har bir ifodasini 144 ga bo‘ling.
1+\frac{1}{6}h+\frac{1}{144}h^{2}=2
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\frac{1}{6}h+\frac{1}{144}h^{2}=2-1
Ikkala tarafdan 1 ni ayirish.
\frac{1}{6}h+\frac{1}{144}h^{2}=1
1 olish uchun 2 dan 1 ni ayirish.
\frac{1}{144}h^{2}+\frac{1}{6}h=1
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{\frac{1}{144}h^{2}+\frac{1}{6}h}{\frac{1}{144}}=\frac{1}{\frac{1}{144}}
Ikkala tarafini 144 ga ko‘paytiring.
h^{2}+\frac{\frac{1}{6}}{\frac{1}{144}}h=\frac{1}{\frac{1}{144}}
\frac{1}{144} ga bo'lish \frac{1}{144} ga ko'paytirishni bekor qiladi.
h^{2}+24h=\frac{1}{\frac{1}{144}}
\frac{1}{6} ni \frac{1}{144} ga bo'lish \frac{1}{6} ga k'paytirish \frac{1}{144} ga qaytarish.
h^{2}+24h=144
1 ni \frac{1}{144} ga bo'lish 1 ga k'paytirish \frac{1}{144} ga qaytarish.
h^{2}+24h+12^{2}=144+12^{2}
24 ni bo‘lish, x shartining koeffitsienti, 2 ga 12 olish uchun. Keyin, 12 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
h^{2}+24h+144=144+144
12 kvadratini chiqarish.
h^{2}+24h+144=288
144 ni 144 ga qo'shish.
\left(h+12\right)^{2}=288
h^{2}+24h+144 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(h+12\right)^{2}}=\sqrt{288}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
h+12=12\sqrt{2} h+12=-12\sqrt{2}
Qisqartirish.
h=12\sqrt{2}-12 h=-12\sqrt{2}-12
Tenglamaning ikkala tarafidan 12 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}