Baholash
1-\sqrt{2}\approx -0,414213562
Omil
1-\sqrt{2}
Baham ko'rish
Klipbordga nusxa olish
\frac{2\left(\sqrt{2}+2\right)}{\left(\sqrt{2}-2\right)\left(\sqrt{2}+2\right)}+\frac{\sqrt{2}+1}{\sqrt{2}-1}-\frac{\sqrt{32}}{2}
\frac{2}{\sqrt{2}-2} maxrajini \sqrt{2}+2 orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{2\left(\sqrt{2}+2\right)}{\left(\sqrt{2}\right)^{2}-2^{2}}+\frac{\sqrt{2}+1}{\sqrt{2}-1}-\frac{\sqrt{32}}{2}
Hisoblang: \left(\sqrt{2}-2\right)\left(\sqrt{2}+2\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(\sqrt{2}+2\right)}{2-4}+\frac{\sqrt{2}+1}{\sqrt{2}-1}-\frac{\sqrt{32}}{2}
\sqrt{2} kvadratini chiqarish. 2 kvadratini chiqarish.
\frac{2\left(\sqrt{2}+2\right)}{-2}+\frac{\sqrt{2}+1}{\sqrt{2}-1}-\frac{\sqrt{32}}{2}
-2 olish uchun 2 dan 4 ni ayirish.
-\left(\sqrt{2}+2\right)+\frac{\sqrt{2}+1}{\sqrt{2}-1}-\frac{\sqrt{32}}{2}
-2 va -2 ni qisqartiring.
-\left(\sqrt{2}+2\right)+\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}-\frac{\sqrt{32}}{2}
\frac{\sqrt{2}+1}{\sqrt{2}-1} maxrajini \sqrt{2}+1 orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
-\left(\sqrt{2}+2\right)+\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)}{\left(\sqrt{2}\right)^{2}-1^{2}}-\frac{\sqrt{32}}{2}
Hisoblang: \left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-\left(\sqrt{2}+2\right)+\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)}{2-1}-\frac{\sqrt{32}}{2}
\sqrt{2} kvadratini chiqarish. 1 kvadratini chiqarish.
-\left(\sqrt{2}+2\right)+\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)}{1}-\frac{\sqrt{32}}{2}
1 olish uchun 2 dan 1 ni ayirish.
-\left(\sqrt{2}+2\right)+\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)-\frac{\sqrt{32}}{2}
Har qanday son birga bo‘linganda, natija o‘zi chiqadi.
-\left(\sqrt{2}+2\right)+\left(\sqrt{2}+1\right)^{2}-\frac{\sqrt{32}}{2}
\left(\sqrt{2}+1\right)^{2} hosil qilish uchun \sqrt{2}+1 va \sqrt{2}+1 ni ko'paytirish.
-\left(\sqrt{2}+2\right)+\left(\sqrt{2}+1\right)^{2}-\frac{4\sqrt{2}}{2}
Faktor: 32=4^{2}\times 2. \sqrt{4^{2}\times 2} koʻpaytmasining kvadrat ildizini \sqrt{4^{2}}\sqrt{2} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing. 4^{2} ning kvadrat ildizini chiqarish.
-\left(\sqrt{2}+2\right)+\left(\sqrt{2}+1\right)^{2}-2\sqrt{2}
2\sqrt{2} ni olish uchun 4\sqrt{2} ni 2 ga bo‘ling.
-\sqrt{2}-2+\left(\sqrt{2}+1\right)^{2}-2\sqrt{2}
\sqrt{2}+2 teskarisini topish uchun har birining teskarisini toping.
-\sqrt{2}-2+\left(\sqrt{2}\right)^{2}+2\sqrt{2}+1-2\sqrt{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(\sqrt{2}+1\right)^{2} kengaytirilishi uchun ishlating.
-\sqrt{2}-2+2+2\sqrt{2}+1-2\sqrt{2}
\sqrt{2} kvadrati – 2.
-\sqrt{2}-2+3+2\sqrt{2}-2\sqrt{2}
3 olish uchun 2 va 1'ni qo'shing.
-\sqrt{2}+1+2\sqrt{2}-2\sqrt{2}
1 olish uchun -2 va 3'ni qo'shing.
\sqrt{2}+1-2\sqrt{2}
\sqrt{2} ni olish uchun -\sqrt{2} va 2\sqrt{2} ni birlashtirish.
-\sqrt{2}+1
-\sqrt{2} ni olish uchun \sqrt{2} va -2\sqrt{2} ni birlashtirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}