Asosiy tarkibga oʻtish
b uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{2\times 2}{\sqrt{2}}=\frac{b}{\frac{\sqrt{2}+\sqrt{6}}{4}}
2 ni \frac{\sqrt{2}}{2} ga bo'lish 2 ga k'paytirish \frac{\sqrt{2}}{2} ga qaytarish.
\frac{4}{\sqrt{2}}=\frac{b}{\frac{\sqrt{2}+\sqrt{6}}{4}}
4 hosil qilish uchun 2 va 2 ni ko'paytirish.
\frac{4\sqrt{2}}{\left(\sqrt{2}\right)^{2}}=\frac{b}{\frac{\sqrt{2}+\sqrt{6}}{4}}
\frac{4}{\sqrt{2}} maxrajini \sqrt{2} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{4\sqrt{2}}{2}=\frac{b}{\frac{\sqrt{2}+\sqrt{6}}{4}}
\sqrt{2} kvadrati – 2.
2\sqrt{2}=\frac{b}{\frac{\sqrt{2}+\sqrt{6}}{4}}
2\sqrt{2} ni olish uchun 4\sqrt{2} ni 2 ga bo‘ling.
2\sqrt{2}=\frac{b\times 4}{\sqrt{2}+\sqrt{6}}
b ni \frac{\sqrt{2}+\sqrt{6}}{4} ga bo'lish b ga k'paytirish \frac{\sqrt{2}+\sqrt{6}}{4} ga qaytarish.
2\sqrt{2}=\frac{b\times 4\left(\sqrt{2}-\sqrt{6}\right)}{\left(\sqrt{2}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{6}\right)}
\frac{b\times 4}{\sqrt{2}+\sqrt{6}} maxrajini \sqrt{2}-\sqrt{6} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
2\sqrt{2}=\frac{b\times 4\left(\sqrt{2}-\sqrt{6}\right)}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{6}\right)^{2}}
Hisoblang: \left(\sqrt{2}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{6}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2\sqrt{2}=\frac{b\times 4\left(\sqrt{2}-\sqrt{6}\right)}{2-6}
\sqrt{2} kvadratini chiqarish. \sqrt{6} kvadratini chiqarish.
2\sqrt{2}=\frac{b\times 4\left(\sqrt{2}-\sqrt{6}\right)}{-4}
-4 olish uchun 2 dan 6 ni ayirish.
2\sqrt{2}=b\left(-1\right)\left(\sqrt{2}-\sqrt{6}\right)
-4 va -4 ni qisqartiring.
2\sqrt{2}=-b\sqrt{2}+b\sqrt{6}
b\left(-1\right) ga \sqrt{2}-\sqrt{6} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-b\sqrt{2}+b\sqrt{6}=2\sqrt{2}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\left(-\sqrt{2}+\sqrt{6}\right)b=2\sqrt{2}
b'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(\sqrt{6}-\sqrt{2}\right)b=2\sqrt{2}
Tenglama standart shaklda.
\frac{\left(\sqrt{6}-\sqrt{2}\right)b}{\sqrt{6}-\sqrt{2}}=\frac{2\sqrt{2}}{\sqrt{6}-\sqrt{2}}
Ikki tarafini -\sqrt{2}+\sqrt{6} ga bo‘ling.
b=\frac{2\sqrt{2}}{\sqrt{6}-\sqrt{2}}
-\sqrt{2}+\sqrt{6} ga bo'lish -\sqrt{2}+\sqrt{6} ga ko'paytirishni bekor qiladi.
b=\sqrt{3}+1
2\sqrt{2} ni -\sqrt{2}+\sqrt{6} ga bo'lish.