Baholash
-4\sqrt{5}-9\approx -17,94427191
Baham ko'rish
Klipbordga nusxa olish
\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}
\frac{2+\sqrt{5}}{2-\sqrt{5}} maxrajini 2+\sqrt{5} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{2^{2}-\left(\sqrt{5}\right)^{2}}
Hisoblang: \left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{4-5}
2 kvadratini chiqarish. \sqrt{5} kvadratini chiqarish.
\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{-1}
-1 olish uchun 4 dan 5 ni ayirish.
\frac{\left(2+\sqrt{5}\right)^{2}}{-1}
\left(2+\sqrt{5}\right)^{2} hosil qilish uchun 2+\sqrt{5} va 2+\sqrt{5} ni ko'paytirish.
\frac{4+4\sqrt{5}+\left(\sqrt{5}\right)^{2}}{-1}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2+\sqrt{5}\right)^{2} kengaytirilishi uchun ishlating.
\frac{4+4\sqrt{5}+5}{-1}
\sqrt{5} kvadrati – 5.
\frac{9+4\sqrt{5}}{-1}
9 olish uchun 4 va 5'ni qo'shing.
-9-4\sqrt{5}
Istalgan sonni -1 ga boʻlsangiz, uning qarama-qarshisi chiqadi. 9+4\sqrt{5} teskarisini topish uchun har birining teskarisini toping.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}