Asosiy tarkibga oʻtish
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}
\frac{2+\sqrt{5}}{2-\sqrt{5}} maxrajini 2+\sqrt{5} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{2^{2}-\left(\sqrt{5}\right)^{2}}
Hisoblang: \left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{4-5}
2 kvadratini chiqarish. \sqrt{5} kvadratini chiqarish.
\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{-1}
-1 olish uchun 4 dan 5 ni ayirish.
\frac{\left(2+\sqrt{5}\right)^{2}}{-1}
\left(2+\sqrt{5}\right)^{2} hosil qilish uchun 2+\sqrt{5} va 2+\sqrt{5} ni ko'paytirish.
\frac{4+4\sqrt{5}+\left(\sqrt{5}\right)^{2}}{-1}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2+\sqrt{5}\right)^{2} kengaytirilishi uchun ishlating.
\frac{4+4\sqrt{5}+5}{-1}
\sqrt{5} kvadrati – 5.
\frac{9+4\sqrt{5}}{-1}
9 olish uchun 4 va 5'ni qo'shing.
-9-4\sqrt{5}
Istalgan sonni -1 ga boʻlsangiz, uning qarama-qarshisi chiqadi. 9+4\sqrt{5} teskarisini topish uchun har birining teskarisini toping.