Baholash
\frac{\sqrt{2}+4}{7}\approx 0,77345908
Omil
\frac{\sqrt{2} + 4}{7} = 0,7734590803390136
Baham ko'rish
Klipbordga nusxa olish
\frac{\left(2+\sqrt{2}\right)\left(3-\sqrt{2}\right)}{\left(3+\sqrt{2}\right)\left(3-\sqrt{2}\right)}
\frac{2+\sqrt{2}}{3+\sqrt{2}} maxrajini 3-\sqrt{2} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\left(2+\sqrt{2}\right)\left(3-\sqrt{2}\right)}{3^{2}-\left(\sqrt{2}\right)^{2}}
Hisoblang: \left(3+\sqrt{2}\right)\left(3-\sqrt{2}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+\sqrt{2}\right)\left(3-\sqrt{2}\right)}{9-2}
3 kvadratini chiqarish. \sqrt{2} kvadratini chiqarish.
\frac{\left(2+\sqrt{2}\right)\left(3-\sqrt{2}\right)}{7}
7 olish uchun 9 dan 2 ni ayirish.
\frac{6-2\sqrt{2}+3\sqrt{2}-\left(\sqrt{2}\right)^{2}}{7}
2+\sqrt{2} ifodaning har bir elementini 3-\sqrt{2} ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
\frac{6+\sqrt{2}-\left(\sqrt{2}\right)^{2}}{7}
\sqrt{2} ni olish uchun -2\sqrt{2} va 3\sqrt{2} ni birlashtirish.
\frac{6+\sqrt{2}-2}{7}
\sqrt{2} kvadrati – 2.
\frac{4+\sqrt{2}}{7}
4 olish uchun 6 dan 2 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}