Baholash
\frac{9x^{4}}{y^{3}}
x ga nisbatan hosilani topish
36\times \left(\frac{x}{y}\right)^{3}
Baham ko'rish
Klipbordga nusxa olish
\frac{18^{1}x^{5}y^{1}}{2^{1}x^{1}y^{4}}
Ifodani qisqartirish uchun eksponent qoidalaridan foydalanish.
\frac{18^{1}}{2^{1}}x^{5-1}y^{1-4}
Ayni asosning daraja ko'rsatkichi bo'lish uchun maxrajning darajasini surat darajasidan bo'ling.
\frac{18^{1}}{2^{1}}x^{4}y^{1-4}
5 dan 1 ni ayirish.
\frac{18^{1}}{2^{1}}x^{4}y^{-3}
1 dan 4 ni ayirish.
9x^{4}\times \frac{1}{y^{3}}
18 ni 2 ga bo'lish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{18y}{2y^{4}}x^{5-1})
Ayni asosning daraja ko'rsatkichi bo'lish uchun maxrajning darajasini surat darajasidan bo'ling.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{9}{y^{3}}x^{4})
Arifmetik hisobni amalga oshirish.
4\times \frac{9}{y^{3}}x^{4-1}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
\frac{36}{y^{3}}x^{3}
Arifmetik hisobni amalga oshirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}