Baholash
\frac{3st^{2}}{4}
s ga nisbatan hosilani topish
\frac{3t^{2}}{4}
Baham ko'rish
Klipbordga nusxa olish
\frac{18^{1}s^{3}t^{3}}{24^{1}s^{2}t^{1}}
Ifodani qisqartirish uchun eksponent qoidalaridan foydalanish.
\frac{18^{1}}{24^{1}}s^{3-2}t^{3-1}
Ayni asosning daraja ko'rsatkichi bo'lish uchun maxrajning darajasini surat darajasidan bo'ling.
\frac{18^{1}}{24^{1}}s^{1}t^{3-1}
3 dan 2 ni ayirish.
\frac{18^{1}}{24^{1}}st^{2}
3 dan 1 ni ayirish.
\frac{3}{4}st^{2}
\frac{18}{24} ulushini 6 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{\mathrm{d}}{\mathrm{d}s}(\frac{18t^{3}}{24t}s^{3-2})
Ayni asosning daraja ko'rsatkichi bo'lish uchun maxrajning darajasini surat darajasidan bo'ling.
\frac{\mathrm{d}}{\mathrm{d}s}(\frac{3t^{2}}{4}s^{1})
Arifmetik hisobni amalga oshirish.
\frac{3t^{2}}{4}s^{1-1}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
\frac{3t^{2}}{4}s^{0}
Arifmetik hisobni amalga oshirish.
\frac{3t^{2}}{4}\times 1
Har qanday t sharti uchun (0 bundan mustasno) t^{0}=1.
\frac{3t^{2}}{4}
Har qanday t sharti uchun t\times 1=t va 1t=t.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}