x uchun yechish
x=-56
x=42
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(x+14\right)\times 168-x\times 168=x\left(x+14\right)
x qiymati -14,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x\left(x+14\right) ga, x,x+14 ning eng kichik karralisiga ko‘paytiring.
168x+2352-x\times 168=x\left(x+14\right)
x+14 ga 168 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
168x+2352-x\times 168=x^{2}+14x
x ga x+14 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
168x+2352-x\times 168-x^{2}=14x
Ikkala tarafdan x^{2} ni ayirish.
168x+2352-x\times 168-x^{2}-14x=0
Ikkala tarafdan 14x ni ayirish.
154x+2352-x\times 168-x^{2}=0
154x ni olish uchun 168x va -14x ni birlashtirish.
154x+2352-168x-x^{2}=0
-168 hosil qilish uchun -1 va 168 ni ko'paytirish.
-14x+2352-x^{2}=0
-14x ni olish uchun 154x va -168x ni birlashtirish.
-x^{2}-14x+2352=0
Polinomni standart shaklga keltirish uchun uni qayta tartiblang. Shartlarni eng yuqoridan eng pastki qiymat ko'rsatgichiga joylashtirish.
a+b=-14 ab=-2352=-2352
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon -x^{2}+ax+bx+2352 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-2352 2,-1176 3,-784 4,-588 6,-392 7,-336 8,-294 12,-196 14,-168 16,-147 21,-112 24,-98 28,-84 42,-56 48,-49
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -2352-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-2352=-2351 2-1176=-1174 3-784=-781 4-588=-584 6-392=-386 7-336=-329 8-294=-286 12-196=-184 14-168=-154 16-147=-131 21-112=-91 24-98=-74 28-84=-56 42-56=-14 48-49=-1
Har bir juftlik yigʻindisini hisoblang.
a=42 b=-56
Yechim – -14 yigʻindisini beruvchi juftlik.
\left(-x^{2}+42x\right)+\left(-56x+2352\right)
-x^{2}-14x+2352 ni \left(-x^{2}+42x\right)+\left(-56x+2352\right) sifatida qaytadan yozish.
x\left(-x+42\right)+56\left(-x+42\right)
Birinchi guruhda x ni va ikkinchi guruhda 56 ni faktordan chiqaring.
\left(-x+42\right)\left(x+56\right)
Distributiv funktsiyasidan foydalangan holda -x+42 umumiy terminini chiqaring.
x=42 x=-56
Tenglamani yechish uchun -x+42=0 va x+56=0 ni yeching.
\left(x+14\right)\times 168-x\times 168=x\left(x+14\right)
x qiymati -14,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x\left(x+14\right) ga, x,x+14 ning eng kichik karralisiga ko‘paytiring.
168x+2352-x\times 168=x\left(x+14\right)
x+14 ga 168 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
168x+2352-x\times 168=x^{2}+14x
x ga x+14 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
168x+2352-x\times 168-x^{2}=14x
Ikkala tarafdan x^{2} ni ayirish.
168x+2352-x\times 168-x^{2}-14x=0
Ikkala tarafdan 14x ni ayirish.
154x+2352-x\times 168-x^{2}=0
154x ni olish uchun 168x va -14x ni birlashtirish.
154x+2352-168x-x^{2}=0
-168 hosil qilish uchun -1 va 168 ni ko'paytirish.
-14x+2352-x^{2}=0
-14x ni olish uchun 154x va -168x ni birlashtirish.
-x^{2}-14x+2352=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\left(-1\right)\times 2352}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, -14 ni b va 2352 ni c bilan almashtiring.
x=\frac{-\left(-14\right)±\sqrt{196-4\left(-1\right)\times 2352}}{2\left(-1\right)}
-14 kvadratini chiqarish.
x=\frac{-\left(-14\right)±\sqrt{196+4\times 2352}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-14\right)±\sqrt{196+9408}}{2\left(-1\right)}
4 ni 2352 marotabaga ko'paytirish.
x=\frac{-\left(-14\right)±\sqrt{9604}}{2\left(-1\right)}
196 ni 9408 ga qo'shish.
x=\frac{-\left(-14\right)±98}{2\left(-1\right)}
9604 ning kvadrat ildizini chiqarish.
x=\frac{14±98}{2\left(-1\right)}
-14 ning teskarisi 14 ga teng.
x=\frac{14±98}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{112}{-2}
x=\frac{14±98}{-2} tenglamasini yeching, bunda ± musbat. 14 ni 98 ga qo'shish.
x=-56
112 ni -2 ga bo'lish.
x=-\frac{84}{-2}
x=\frac{14±98}{-2} tenglamasini yeching, bunda ± manfiy. 14 dan 98 ni ayirish.
x=42
-84 ni -2 ga bo'lish.
x=-56 x=42
Tenglama yechildi.
\left(x+14\right)\times 168-x\times 168=x\left(x+14\right)
x qiymati -14,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x\left(x+14\right) ga, x,x+14 ning eng kichik karralisiga ko‘paytiring.
168x+2352-x\times 168=x\left(x+14\right)
x+14 ga 168 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
168x+2352-x\times 168=x^{2}+14x
x ga x+14 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
168x+2352-x\times 168-x^{2}=14x
Ikkala tarafdan x^{2} ni ayirish.
168x+2352-x\times 168-x^{2}-14x=0
Ikkala tarafdan 14x ni ayirish.
154x+2352-x\times 168-x^{2}=0
154x ni olish uchun 168x va -14x ni birlashtirish.
154x-x\times 168-x^{2}=-2352
Ikkala tarafdan 2352 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
154x-168x-x^{2}=-2352
-168 hosil qilish uchun -1 va 168 ni ko'paytirish.
-14x-x^{2}=-2352
-14x ni olish uchun 154x va -168x ni birlashtirish.
-x^{2}-14x=-2352
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}-14x}{-1}=-\frac{2352}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\left(-\frac{14}{-1}\right)x=-\frac{2352}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}+14x=-\frac{2352}{-1}
-14 ni -1 ga bo'lish.
x^{2}+14x=2352
-2352 ni -1 ga bo'lish.
x^{2}+14x+7^{2}=2352+7^{2}
14 ni bo‘lish, x shartining koeffitsienti, 2 ga 7 olish uchun. Keyin, 7 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+14x+49=2352+49
7 kvadratini chiqarish.
x^{2}+14x+49=2401
2352 ni 49 ga qo'shish.
\left(x+7\right)^{2}=2401
x^{2}+14x+49 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+7\right)^{2}}=\sqrt{2401}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+7=49 x+7=-49
Qisqartirish.
x=42 x=-56
Tenglamaning ikkala tarafidan 7 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}