Baholash
-2
Omil
-2
Baham ko'rish
Klipbordga nusxa olish
\frac{\left(16-m^{2}\right)\left(2m+4\right)}{\left(m-2\right)\left(m+4\right)\left(m-4\right)}\times \frac{m-2}{m+2}
\frac{16-m^{2}}{\left(m-2\right)\left(m+4\right)} ni \frac{m-4}{2m+4} ga bo'lish \frac{16-m^{2}}{\left(m-2\right)\left(m+4\right)} ga k'paytirish \frac{m-4}{2m+4} ga qaytarish.
\frac{2\left(m-4\right)\left(-m-4\right)\left(m+2\right)}{\left(m-4\right)\left(m-2\right)\left(m+4\right)}\times \frac{m-2}{m+2}
\frac{\left(16-m^{2}\right)\left(2m+4\right)}{\left(m-2\right)\left(m+4\right)\left(m-4\right)} ichida hali faktorlanmagan ifodalarni faktorlang.
\frac{-2\left(m-4\right)\left(m+2\right)\left(m+4\right)}{\left(m-4\right)\left(m-2\right)\left(m+4\right)}\times \frac{m-2}{m+2}
-4-m mislodagi manfiy ishorani chiqarib tashlang.
\frac{-2\left(m+2\right)}{m-2}\times \frac{m-2}{m+2}
Surat va maxrajdagi ikkala \left(m-4\right)\left(m+4\right) ni qisqartiring.
\frac{-2\left(m+2\right)\left(m-2\right)}{\left(m-2\right)\left(m+2\right)}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{-2\left(m+2\right)}{m-2} ni \frac{m-2}{m+2} ga ko‘paytiring.
-2
Surat va maxrajdagi ikkala \left(m-2\right)\left(m+2\right) ni qisqartiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}