x uchun yechish
x=-5
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(x-2\right)\times 16+\left(x+3\right)\times 4-\left(3-x\right)\times 5\left(x+2\right)=0
x qiymati -3,2,3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-3\right)\left(x-2\right)\left(x+3\right) ga, x^{2}-9,x^{2}-5x+6,6-x-x^{2} ning eng kichik karralisiga ko‘paytiring.
16x-32+\left(x+3\right)\times 4-\left(3-x\right)\times 5\left(x+2\right)=0
x-2 ga 16 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
16x-32+4x+12-\left(3-x\right)\times 5\left(x+2\right)=0
x+3 ga 4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
20x-32+12-\left(3-x\right)\times 5\left(x+2\right)=0
20x ni olish uchun 16x va 4x ni birlashtirish.
20x-20-\left(3-x\right)\times 5\left(x+2\right)=0
-20 olish uchun -32 va 12'ni qo'shing.
20x-20-\left(15-5x\right)\left(x+2\right)=0
3-x ga 5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
20x-20-\left(5x+30-5x^{2}\right)=0
15-5x ga x+2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
20x-20-5x-30+5x^{2}=0
5x+30-5x^{2} teskarisini topish uchun har birining teskarisini toping.
15x-20-30+5x^{2}=0
15x ni olish uchun 20x va -5x ni birlashtirish.
15x-50+5x^{2}=0
-50 olish uchun -20 dan 30 ni ayirish.
3x-10+x^{2}=0
Ikki tarafini 5 ga bo‘ling.
x^{2}+3x-10=0
Polinomni standart shaklga keltirish uchun uni qayta tartiblang. Shartlarni eng yuqoridan eng pastki qiymat ko'rsatgichiga joylashtirish.
a+b=3 ab=1\left(-10\right)=-10
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon x^{2}+ax+bx-10 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,10 -2,5
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b musbat boʻlganda, musbat sonda manfiyga nisbatdan kattaroq mutlaq qiymat bor. -10-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1+10=9 -2+5=3
Har bir juftlik yigʻindisini hisoblang.
a=-2 b=5
Yechim – 3 yigʻindisini beruvchi juftlik.
\left(x^{2}-2x\right)+\left(5x-10\right)
x^{2}+3x-10 ni \left(x^{2}-2x\right)+\left(5x-10\right) sifatida qaytadan yozish.
x\left(x-2\right)+5\left(x-2\right)
Birinchi guruhda x ni va ikkinchi guruhda 5 ni faktordan chiqaring.
\left(x-2\right)\left(x+5\right)
Distributiv funktsiyasidan foydalangan holda x-2 umumiy terminini chiqaring.
x=2 x=-5
Tenglamani yechish uchun x-2=0 va x+5=0 ni yeching.
x=-5
x qiymati 2 teng bo‘lmaydi.
\left(x-2\right)\times 16+\left(x+3\right)\times 4-\left(3-x\right)\times 5\left(x+2\right)=0
x qiymati -3,2,3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-3\right)\left(x-2\right)\left(x+3\right) ga, x^{2}-9,x^{2}-5x+6,6-x-x^{2} ning eng kichik karralisiga ko‘paytiring.
16x-32+\left(x+3\right)\times 4-\left(3-x\right)\times 5\left(x+2\right)=0
x-2 ga 16 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
16x-32+4x+12-\left(3-x\right)\times 5\left(x+2\right)=0
x+3 ga 4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
20x-32+12-\left(3-x\right)\times 5\left(x+2\right)=0
20x ni olish uchun 16x va 4x ni birlashtirish.
20x-20-\left(3-x\right)\times 5\left(x+2\right)=0
-20 olish uchun -32 va 12'ni qo'shing.
20x-20-\left(15-5x\right)\left(x+2\right)=0
3-x ga 5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
20x-20-\left(5x+30-5x^{2}\right)=0
15-5x ga x+2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
20x-20-5x-30+5x^{2}=0
5x+30-5x^{2} teskarisini topish uchun har birining teskarisini toping.
15x-20-30+5x^{2}=0
15x ni olish uchun 20x va -5x ni birlashtirish.
15x-50+5x^{2}=0
-50 olish uchun -20 dan 30 ni ayirish.
5x^{2}+15x-50=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-15±\sqrt{15^{2}-4\times 5\left(-50\right)}}{2\times 5}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 5 ni a, 15 ni b va -50 ni c bilan almashtiring.
x=\frac{-15±\sqrt{225-4\times 5\left(-50\right)}}{2\times 5}
15 kvadratini chiqarish.
x=\frac{-15±\sqrt{225-20\left(-50\right)}}{2\times 5}
-4 ni 5 marotabaga ko'paytirish.
x=\frac{-15±\sqrt{225+1000}}{2\times 5}
-20 ni -50 marotabaga ko'paytirish.
x=\frac{-15±\sqrt{1225}}{2\times 5}
225 ni 1000 ga qo'shish.
x=\frac{-15±35}{2\times 5}
1225 ning kvadrat ildizini chiqarish.
x=\frac{-15±35}{10}
2 ni 5 marotabaga ko'paytirish.
x=\frac{20}{10}
x=\frac{-15±35}{10} tenglamasini yeching, bunda ± musbat. -15 ni 35 ga qo'shish.
x=2
20 ni 10 ga bo'lish.
x=-\frac{50}{10}
x=\frac{-15±35}{10} tenglamasini yeching, bunda ± manfiy. -15 dan 35 ni ayirish.
x=-5
-50 ni 10 ga bo'lish.
x=2 x=-5
Tenglama yechildi.
x=-5
x qiymati 2 teng bo‘lmaydi.
\left(x-2\right)\times 16+\left(x+3\right)\times 4-\left(3-x\right)\times 5\left(x+2\right)=0
x qiymati -3,2,3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-3\right)\left(x-2\right)\left(x+3\right) ga, x^{2}-9,x^{2}-5x+6,6-x-x^{2} ning eng kichik karralisiga ko‘paytiring.
16x-32+\left(x+3\right)\times 4-\left(3-x\right)\times 5\left(x+2\right)=0
x-2 ga 16 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
16x-32+4x+12-\left(3-x\right)\times 5\left(x+2\right)=0
x+3 ga 4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
20x-32+12-\left(3-x\right)\times 5\left(x+2\right)=0
20x ni olish uchun 16x va 4x ni birlashtirish.
20x-20-\left(3-x\right)\times 5\left(x+2\right)=0
-20 olish uchun -32 va 12'ni qo'shing.
20x-20-\left(15-5x\right)\left(x+2\right)=0
3-x ga 5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
20x-20-\left(5x+30-5x^{2}\right)=0
15-5x ga x+2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
20x-20-5x-30+5x^{2}=0
5x+30-5x^{2} teskarisini topish uchun har birining teskarisini toping.
15x-20-30+5x^{2}=0
15x ni olish uchun 20x va -5x ni birlashtirish.
15x-50+5x^{2}=0
-50 olish uchun -20 dan 30 ni ayirish.
15x+5x^{2}=50
50 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
5x^{2}+15x=50
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{5x^{2}+15x}{5}=\frac{50}{5}
Ikki tarafini 5 ga bo‘ling.
x^{2}+\frac{15}{5}x=\frac{50}{5}
5 ga bo'lish 5 ga ko'paytirishni bekor qiladi.
x^{2}+3x=\frac{50}{5}
15 ni 5 ga bo'lish.
x^{2}+3x=10
50 ni 5 ga bo'lish.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=10+\left(\frac{3}{2}\right)^{2}
3 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{2} olish uchun. Keyin, \frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+3x+\frac{9}{4}=10+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{2} kvadratini chiqarish.
x^{2}+3x+\frac{9}{4}=\frac{49}{4}
10 ni \frac{9}{4} ga qo'shish.
\left(x+\frac{3}{2}\right)^{2}=\frac{49}{4}
x^{2}+3x+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{3}{2}=\frac{7}{2} x+\frac{3}{2}=-\frac{7}{2}
Qisqartirish.
x=2 x=-5
Tenglamaning ikkala tarafidan \frac{3}{2} ni ayirish.
x=-5
x qiymati 2 teng bo‘lmaydi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}