Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(2x+500\right)\times 1500-2x\times 1500=x\left(x+250\right)
x qiymati -250,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 2x\left(x+250\right) ga, x,x+250,2 ning eng kichik karralisiga ko‘paytiring.
3000x+750000-2x\times 1500=x\left(x+250\right)
2x+500 ga 1500 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3000x+750000-3000x=x\left(x+250\right)
3000 hosil qilish uchun 2 va 1500 ni ko'paytirish.
3000x+750000-3000x=x^{2}+250x
x ga x+250 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3000x+750000-3000x-x^{2}=250x
Ikkala tarafdan x^{2} ni ayirish.
3000x+750000-3000x-x^{2}-250x=0
Ikkala tarafdan 250x ni ayirish.
2750x+750000-3000x-x^{2}=0
2750x ni olish uchun 3000x va -250x ni birlashtirish.
-250x+750000-x^{2}=0
-250x ni olish uchun 2750x va -3000x ni birlashtirish.
-x^{2}-250x+750000=0
Polinomni standart shaklga keltirish uchun uni qayta tartiblang. Shartlarni eng yuqoridan eng pastki qiymat ko'rsatgichiga joylashtirish.
a+b=-250 ab=-750000=-750000
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon -x^{2}+ax+bx+750000 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-750000 2,-375000 3,-250000 4,-187500 5,-150000 6,-125000 8,-93750 10,-75000 12,-62500 15,-50000 16,-46875 20,-37500 24,-31250 25,-30000 30,-25000 40,-18750 48,-15625 50,-15000 60,-12500 75,-10000 80,-9375 100,-7500 120,-6250 125,-6000 150,-5000 200,-3750 240,-3125 250,-3000 300,-2500 375,-2000 400,-1875 500,-1500 600,-1250 625,-1200 750,-1000
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -750000-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-750000=-749999 2-375000=-374998 3-250000=-249997 4-187500=-187496 5-150000=-149995 6-125000=-124994 8-93750=-93742 10-75000=-74990 12-62500=-62488 15-50000=-49985 16-46875=-46859 20-37500=-37480 24-31250=-31226 25-30000=-29975 30-25000=-24970 40-18750=-18710 48-15625=-15577 50-15000=-14950 60-12500=-12440 75-10000=-9925 80-9375=-9295 100-7500=-7400 120-6250=-6130 125-6000=-5875 150-5000=-4850 200-3750=-3550 240-3125=-2885 250-3000=-2750 300-2500=-2200 375-2000=-1625 400-1875=-1475 500-1500=-1000 600-1250=-650 625-1200=-575 750-1000=-250
Har bir juftlik yigʻindisini hisoblang.
a=-750 b=1000
Yechim – 250 yigʻindisini beruvchi juftlik.
\left(-x^{2}-750x\right)+\left(1000x+750000\right)
-x^{2}-250x+750000 ni \left(-x^{2}-750x\right)+\left(1000x+750000\right) sifatida qaytadan yozish.
x\left(x-750\right)+1000\left(x-750\right)
Birinchi guruhda x ni va ikkinchi guruhda 1000 ni faktordan chiqaring.
\left(x-750\right)\left(x+1000\right)
Distributiv funktsiyasidan foydalangan holda x-750 umumiy terminini chiqaring.
x=750 x=-1000
Tenglamani yechish uchun x-750=0 va x+1000=0 ni yeching.
\left(2x+500\right)\times 1500-2x\times 1500=x\left(x+250\right)
x qiymati -250,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 2x\left(x+250\right) ga, x,x+250,2 ning eng kichik karralisiga ko‘paytiring.
3000x+750000-2x\times 1500=x\left(x+250\right)
2x+500 ga 1500 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3000x+750000-3000x=x\left(x+250\right)
3000 hosil qilish uchun 2 va 1500 ni ko'paytirish.
3000x+750000-3000x=x^{2}+250x
x ga x+250 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3000x+750000-3000x-x^{2}=250x
Ikkala tarafdan x^{2} ni ayirish.
3000x+750000-3000x-x^{2}-250x=0
Ikkala tarafdan 250x ni ayirish.
2750x+750000-3000x-x^{2}=0
2750x ni olish uchun 3000x va -250x ni birlashtirish.
-250x+750000-x^{2}=0
-250x ni olish uchun 2750x va -3000x ni birlashtirish.
-x^{2}-250x+750000=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-250\right)±\sqrt{\left(-250\right)^{2}-4\left(-1\right)\times 750000}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, -250 ni b va 750000 ni c bilan almashtiring.
x=\frac{-\left(-250\right)±\sqrt{62500-4\left(-1\right)\times 750000}}{2\left(-1\right)}
-250 kvadratini chiqarish.
x=\frac{-\left(-250\right)±\sqrt{62500+4\times 750000}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-250\right)±\sqrt{62500+3000000}}{2\left(-1\right)}
4 ni 750000 marotabaga ko'paytirish.
x=\frac{-\left(-250\right)±\sqrt{3062500}}{2\left(-1\right)}
62500 ni 3000000 ga qo'shish.
x=\frac{-\left(-250\right)±1750}{2\left(-1\right)}
3062500 ning kvadrat ildizini chiqarish.
x=\frac{250±1750}{2\left(-1\right)}
-250 ning teskarisi 250 ga teng.
x=\frac{250±1750}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{2000}{-2}
x=\frac{250±1750}{-2} tenglamasini yeching, bunda ± musbat. 250 ni 1750 ga qo'shish.
x=-1000
2000 ni -2 ga bo'lish.
x=-\frac{1500}{-2}
x=\frac{250±1750}{-2} tenglamasini yeching, bunda ± manfiy. 250 dan 1750 ni ayirish.
x=750
-1500 ni -2 ga bo'lish.
x=-1000 x=750
Tenglama yechildi.
\left(2x+500\right)\times 1500-2x\times 1500=x\left(x+250\right)
x qiymati -250,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 2x\left(x+250\right) ga, x,x+250,2 ning eng kichik karralisiga ko‘paytiring.
3000x+750000-2x\times 1500=x\left(x+250\right)
2x+500 ga 1500 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3000x+750000-3000x=x\left(x+250\right)
3000 hosil qilish uchun 2 va 1500 ni ko'paytirish.
3000x+750000-3000x=x^{2}+250x
x ga x+250 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3000x+750000-3000x-x^{2}=250x
Ikkala tarafdan x^{2} ni ayirish.
3000x+750000-3000x-x^{2}-250x=0
Ikkala tarafdan 250x ni ayirish.
2750x+750000-3000x-x^{2}=0
2750x ni olish uchun 3000x va -250x ni birlashtirish.
2750x-3000x-x^{2}=-750000
Ikkala tarafdan 750000 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
-250x-x^{2}=-750000
-250x ni olish uchun 2750x va -3000x ni birlashtirish.
-x^{2}-250x=-750000
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}-250x}{-1}=-\frac{750000}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\left(-\frac{250}{-1}\right)x=-\frac{750000}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}+250x=-\frac{750000}{-1}
-250 ni -1 ga bo'lish.
x^{2}+250x=750000
-750000 ni -1 ga bo'lish.
x^{2}+250x+125^{2}=750000+125^{2}
250 ni bo‘lish, x shartining koeffitsienti, 2 ga 125 olish uchun. Keyin, 125 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+250x+15625=750000+15625
125 kvadratini chiqarish.
x^{2}+250x+15625=765625
750000 ni 15625 ga qo'shish.
\left(x+125\right)^{2}=765625
x^{2}+250x+15625 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+125\right)^{2}}=\sqrt{765625}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+125=875 x+125=-875
Qisqartirish.
x=750 x=-1000
Tenglamaning ikkala tarafidan 125 ni ayirish.