Baholash
3y^{3}
y ga nisbatan hosilani topish
9y^{2}
Baham ko'rish
Klipbordga nusxa olish
\frac{15^{1}x^{1}y^{5}}{5^{1}x^{1}y^{2}}
Ifodani qisqartirish uchun eksponent qoidalaridan foydalanish.
\frac{15^{1}}{5^{1}}x^{1-1}y^{5-2}
Ayni asosning daraja ko'rsatkichi bo'lish uchun maxrajning darajasini surat darajasidan bo'ling.
\frac{15^{1}}{5^{1}}x^{0}y^{5-2}
1 dan 1 ni ayirish.
\frac{15^{1}}{5^{1}}y^{5-2}
Har qanday a raqami uchun (0 bundan mustasno) a^{0}=1.
\frac{15^{1}}{5^{1}}y^{3}
5 dan 2 ni ayirish.
3y^{3}
15 ni 5 ga bo'lish.
\frac{\mathrm{d}}{\mathrm{d}y}(3y^{3})
Surat va maxrajdagi ikkala 5xy^{2} ni qisqartiring.
3\times 3y^{3-1}
ax^{n} hosilasi – nax^{n-1}.
9y^{3-1}
3 ni 3 marotabaga ko'paytirish.
9y^{2}
3 dan 1 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}