p uchun yechish
p=\frac{-4+\sqrt{134}i}{5}\approx -0,8+2,315167381i
p=\frac{-\sqrt{134}i-4}{5}\approx -0,8-2,315167381i
Baham ko'rish
Klipbordga nusxa olish
\left(p+2\right)\times 15+p\left(6p-5\right)=p\left(p+2\right)
p qiymati -2,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini p\left(p+2\right) ga, p,p+2 ning eng kichik karralisiga ko‘paytiring.
15p+30+p\left(6p-5\right)=p\left(p+2\right)
p+2 ga 15 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
15p+30+6p^{2}-5p=p\left(p+2\right)
p ga 6p-5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
10p+30+6p^{2}=p\left(p+2\right)
10p ni olish uchun 15p va -5p ni birlashtirish.
10p+30+6p^{2}=p^{2}+2p
p ga p+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
10p+30+6p^{2}-p^{2}=2p
Ikkala tarafdan p^{2} ni ayirish.
10p+30+5p^{2}=2p
5p^{2} ni olish uchun 6p^{2} va -p^{2} ni birlashtirish.
10p+30+5p^{2}-2p=0
Ikkala tarafdan 2p ni ayirish.
8p+30+5p^{2}=0
8p ni olish uchun 10p va -2p ni birlashtirish.
5p^{2}+8p+30=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
p=\frac{-8±\sqrt{8^{2}-4\times 5\times 30}}{2\times 5}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 5 ni a, 8 ni b va 30 ni c bilan almashtiring.
p=\frac{-8±\sqrt{64-4\times 5\times 30}}{2\times 5}
8 kvadratini chiqarish.
p=\frac{-8±\sqrt{64-20\times 30}}{2\times 5}
-4 ni 5 marotabaga ko'paytirish.
p=\frac{-8±\sqrt{64-600}}{2\times 5}
-20 ni 30 marotabaga ko'paytirish.
p=\frac{-8±\sqrt{-536}}{2\times 5}
64 ni -600 ga qo'shish.
p=\frac{-8±2\sqrt{134}i}{2\times 5}
-536 ning kvadrat ildizini chiqarish.
p=\frac{-8±2\sqrt{134}i}{10}
2 ni 5 marotabaga ko'paytirish.
p=\frac{-8+2\sqrt{134}i}{10}
p=\frac{-8±2\sqrt{134}i}{10} tenglamasini yeching, bunda ± musbat. -8 ni 2i\sqrt{134} ga qo'shish.
p=\frac{-4+\sqrt{134}i}{5}
-8+2i\sqrt{134} ni 10 ga bo'lish.
p=\frac{-2\sqrt{134}i-8}{10}
p=\frac{-8±2\sqrt{134}i}{10} tenglamasini yeching, bunda ± manfiy. -8 dan 2i\sqrt{134} ni ayirish.
p=\frac{-\sqrt{134}i-4}{5}
-8-2i\sqrt{134} ni 10 ga bo'lish.
p=\frac{-4+\sqrt{134}i}{5} p=\frac{-\sqrt{134}i-4}{5}
Tenglama yechildi.
\left(p+2\right)\times 15+p\left(6p-5\right)=p\left(p+2\right)
p qiymati -2,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini p\left(p+2\right) ga, p,p+2 ning eng kichik karralisiga ko‘paytiring.
15p+30+p\left(6p-5\right)=p\left(p+2\right)
p+2 ga 15 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
15p+30+6p^{2}-5p=p\left(p+2\right)
p ga 6p-5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
10p+30+6p^{2}=p\left(p+2\right)
10p ni olish uchun 15p va -5p ni birlashtirish.
10p+30+6p^{2}=p^{2}+2p
p ga p+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
10p+30+6p^{2}-p^{2}=2p
Ikkala tarafdan p^{2} ni ayirish.
10p+30+5p^{2}=2p
5p^{2} ni olish uchun 6p^{2} va -p^{2} ni birlashtirish.
10p+30+5p^{2}-2p=0
Ikkala tarafdan 2p ni ayirish.
8p+30+5p^{2}=0
8p ni olish uchun 10p va -2p ni birlashtirish.
8p+5p^{2}=-30
Ikkala tarafdan 30 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
5p^{2}+8p=-30
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{5p^{2}+8p}{5}=-\frac{30}{5}
Ikki tarafini 5 ga bo‘ling.
p^{2}+\frac{8}{5}p=-\frac{30}{5}
5 ga bo'lish 5 ga ko'paytirishni bekor qiladi.
p^{2}+\frac{8}{5}p=-6
-30 ni 5 ga bo'lish.
p^{2}+\frac{8}{5}p+\left(\frac{4}{5}\right)^{2}=-6+\left(\frac{4}{5}\right)^{2}
\frac{8}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{4}{5} olish uchun. Keyin, \frac{4}{5} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
p^{2}+\frac{8}{5}p+\frac{16}{25}=-6+\frac{16}{25}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{4}{5} kvadratini chiqarish.
p^{2}+\frac{8}{5}p+\frac{16}{25}=-\frac{134}{25}
-6 ni \frac{16}{25} ga qo'shish.
\left(p+\frac{4}{5}\right)^{2}=-\frac{134}{25}
p^{2}+\frac{8}{5}p+\frac{16}{25} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(p+\frac{4}{5}\right)^{2}}=\sqrt{-\frac{134}{25}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
p+\frac{4}{5}=\frac{\sqrt{134}i}{5} p+\frac{4}{5}=-\frac{\sqrt{134}i}{5}
Qisqartirish.
p=\frac{-4+\sqrt{134}i}{5} p=\frac{-\sqrt{134}i-4}{5}
Tenglamaning ikkala tarafidan \frac{4}{5} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}