Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Ashyoviy qism
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{15\left(3-4i\right)}{\left(3+4i\right)\left(3-4i\right)}
Ham hisoblagich, ham maxrajni maxraj kompleksiga murakkablash orqali ko'paytirish, 3-4i.
\frac{15\left(3-4i\right)}{3^{2}-4^{2}i^{2}}
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{15\left(3-4i\right)}{25}
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
\frac{15\times 3+15\times \left(-4i\right)}{25}
15 ni 3-4i marotabaga ko'paytirish.
\frac{45-60i}{25}
15\times 3+15\times \left(-4i\right) ichidagi ko‘paytirishlarni bajaring.
\frac{9}{5}-\frac{12}{5}i
\frac{9}{5}-\frac{12}{5}i ni olish uchun 45-60i ni 25 ga bo‘ling.
Re(\frac{15\left(3-4i\right)}{\left(3+4i\right)\left(3-4i\right)})
\frac{15}{3+4i}ning surat va maxrajini murakkab tutash maxraj 3-4i bilan ko‘paytiring.
Re(\frac{15\left(3-4i\right)}{3^{2}-4^{2}i^{2}})
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{15\left(3-4i\right)}{25})
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
Re(\frac{15\times 3+15\times \left(-4i\right)}{25})
15 ni 3-4i marotabaga ko'paytirish.
Re(\frac{45-60i}{25})
15\times 3+15\times \left(-4i\right) ichidagi ko‘paytirishlarni bajaring.
Re(\frac{9}{5}-\frac{12}{5}i)
\frac{9}{5}-\frac{12}{5}i ni olish uchun 45-60i ni 25 ga bo‘ling.
\frac{9}{5}
\frac{9}{5}-\frac{12}{5}i ning real qismi – \frac{9}{5}.