Asosiy tarkibga oʻtish
r uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

r^{2}=\frac{144}{169}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
r^{2}-\frac{144}{169}=0
Ikkala tarafdan \frac{144}{169} ni ayirish.
169r^{2}-144=0
Ikkala tarafini 169 ga ko‘paytiring.
\left(13r-12\right)\left(13r+12\right)=0
Hisoblang: 169r^{2}-144. 169r^{2}-144 ni \left(13r\right)^{2}-12^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
r=\frac{12}{13} r=-\frac{12}{13}
Tenglamani yechish uchun 13r-12=0 va 13r+12=0 ni yeching.
r^{2}=\frac{144}{169}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
r=\frac{12}{13} r=-\frac{12}{13}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
r^{2}=\frac{144}{169}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
r^{2}-\frac{144}{169}=0
Ikkala tarafdan \frac{144}{169} ni ayirish.
r=\frac{0±\sqrt{0^{2}-4\left(-\frac{144}{169}\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -\frac{144}{169} ni c bilan almashtiring.
r=\frac{0±\sqrt{-4\left(-\frac{144}{169}\right)}}{2}
0 kvadratini chiqarish.
r=\frac{0±\sqrt{\frac{576}{169}}}{2}
-4 ni -\frac{144}{169} marotabaga ko'paytirish.
r=\frac{0±\frac{24}{13}}{2}
\frac{576}{169} ning kvadrat ildizini chiqarish.
r=\frac{12}{13}
r=\frac{0±\frac{24}{13}}{2} tenglamasini yeching, bunda ± musbat.
r=-\frac{12}{13}
r=\frac{0±\frac{24}{13}}{2} tenglamasini yeching, bunda ± manfiy.
r=\frac{12}{13} r=-\frac{12}{13}
Tenglama yechildi.