Baholash
\frac{91}{10}-\frac{13}{10}i=9,1-1,3i
Ashyoviy qism
\frac{91}{10} = 9\frac{1}{10} = 9,1
Baham ko'rish
Klipbordga nusxa olish
\frac{13\times 1\left(2-i\right)}{3-i}
4 daraja ko‘rsatkichini i ga hisoblang va 1 ni qiymatni oling.
\frac{13\left(2-i\right)}{3-i}
13 hosil qilish uchun 13 va 1 ni ko'paytirish.
\frac{26-13i}{3-i}
26-13i hosil qilish uchun 13 va 2-i ni ko'paytirish.
\frac{\left(26-13i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}
Ham hisoblagich, ham maxrajni maxraj kompleksiga murakkablash orqali ko'paytirish, 3+i.
\frac{91-13i}{10}
\frac{\left(26-13i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)} ichidagi ko‘paytirishlarni bajaring.
\frac{91}{10}-\frac{13}{10}i
\frac{91}{10}-\frac{13}{10}i ni olish uchun 91-13i ni 10 ga bo‘ling.
Re(\frac{13\times 1\left(2-i\right)}{3-i})
4 daraja ko‘rsatkichini i ga hisoblang va 1 ni qiymatni oling.
Re(\frac{13\left(2-i\right)}{3-i})
13 hosil qilish uchun 13 va 1 ni ko'paytirish.
Re(\frac{26-13i}{3-i})
26-13i hosil qilish uchun 13 va 2-i ni ko'paytirish.
Re(\frac{\left(26-13i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)})
\frac{26-13i}{3-i}ning surat va maxrajini murakkab tutash maxraj 3+i bilan ko‘paytiring.
Re(\frac{91-13i}{10})
\frac{\left(26-13i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)} ichidagi ko‘paytirishlarni bajaring.
Re(\frac{91}{10}-\frac{13}{10}i)
\frac{91}{10}-\frac{13}{10}i ni olish uchun 91-13i ni 10 ga bo‘ling.
\frac{91}{10}
\frac{91}{10}-\frac{13}{10}i ning real qismi – \frac{91}{10}.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}