a uchun yechish
a=-10\sqrt{47}i+10\approx 10-68,556546004i
a=10+10\sqrt{47}i\approx 10+68,556546004i
Baham ko'rish
Klipbordga nusxa olish
\left(a-20\right)\times 1200=a\times 1200+a\left(a-20\right)\times 5
a qiymati 0,20 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini a\left(a-20\right) ga, a,a-20 ning eng kichik karralisiga ko‘paytiring.
1200a-24000=a\times 1200+a\left(a-20\right)\times 5
a-20 ga 1200 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
1200a-24000=a\times 1200+\left(a^{2}-20a\right)\times 5
a ga a-20 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
1200a-24000=a\times 1200+5a^{2}-100a
a^{2}-20a ga 5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
1200a-24000=1100a+5a^{2}
1100a ni olish uchun a\times 1200 va -100a ni birlashtirish.
1200a-24000-1100a=5a^{2}
Ikkala tarafdan 1100a ni ayirish.
100a-24000=5a^{2}
100a ni olish uchun 1200a va -1100a ni birlashtirish.
100a-24000-5a^{2}=0
Ikkala tarafdan 5a^{2} ni ayirish.
-5a^{2}+100a-24000=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
a=\frac{-100±\sqrt{100^{2}-4\left(-5\right)\left(-24000\right)}}{2\left(-5\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -5 ni a, 100 ni b va -24000 ni c bilan almashtiring.
a=\frac{-100±\sqrt{10000-4\left(-5\right)\left(-24000\right)}}{2\left(-5\right)}
100 kvadratini chiqarish.
a=\frac{-100±\sqrt{10000+20\left(-24000\right)}}{2\left(-5\right)}
-4 ni -5 marotabaga ko'paytirish.
a=\frac{-100±\sqrt{10000-480000}}{2\left(-5\right)}
20 ni -24000 marotabaga ko'paytirish.
a=\frac{-100±\sqrt{-470000}}{2\left(-5\right)}
10000 ni -480000 ga qo'shish.
a=\frac{-100±100\sqrt{47}i}{2\left(-5\right)}
-470000 ning kvadrat ildizini chiqarish.
a=\frac{-100±100\sqrt{47}i}{-10}
2 ni -5 marotabaga ko'paytirish.
a=\frac{-100+100\sqrt{47}i}{-10}
a=\frac{-100±100\sqrt{47}i}{-10} tenglamasini yeching, bunda ± musbat. -100 ni 100i\sqrt{47} ga qo'shish.
a=-10\sqrt{47}i+10
-100+100i\sqrt{47} ni -10 ga bo'lish.
a=\frac{-100\sqrt{47}i-100}{-10}
a=\frac{-100±100\sqrt{47}i}{-10} tenglamasini yeching, bunda ± manfiy. -100 dan 100i\sqrt{47} ni ayirish.
a=10+10\sqrt{47}i
-100-100i\sqrt{47} ni -10 ga bo'lish.
a=-10\sqrt{47}i+10 a=10+10\sqrt{47}i
Tenglama yechildi.
\left(a-20\right)\times 1200=a\times 1200+a\left(a-20\right)\times 5
a qiymati 0,20 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini a\left(a-20\right) ga, a,a-20 ning eng kichik karralisiga ko‘paytiring.
1200a-24000=a\times 1200+a\left(a-20\right)\times 5
a-20 ga 1200 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
1200a-24000=a\times 1200+\left(a^{2}-20a\right)\times 5
a ga a-20 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
1200a-24000=a\times 1200+5a^{2}-100a
a^{2}-20a ga 5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
1200a-24000=1100a+5a^{2}
1100a ni olish uchun a\times 1200 va -100a ni birlashtirish.
1200a-24000-1100a=5a^{2}
Ikkala tarafdan 1100a ni ayirish.
100a-24000=5a^{2}
100a ni olish uchun 1200a va -1100a ni birlashtirish.
100a-24000-5a^{2}=0
Ikkala tarafdan 5a^{2} ni ayirish.
100a-5a^{2}=24000
24000 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
-5a^{2}+100a=24000
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-5a^{2}+100a}{-5}=\frac{24000}{-5}
Ikki tarafini -5 ga bo‘ling.
a^{2}+\frac{100}{-5}a=\frac{24000}{-5}
-5 ga bo'lish -5 ga ko'paytirishni bekor qiladi.
a^{2}-20a=\frac{24000}{-5}
100 ni -5 ga bo'lish.
a^{2}-20a=-4800
24000 ni -5 ga bo'lish.
a^{2}-20a+\left(-10\right)^{2}=-4800+\left(-10\right)^{2}
-20 ni bo‘lish, x shartining koeffitsienti, 2 ga -10 olish uchun. Keyin, -10 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
a^{2}-20a+100=-4800+100
-10 kvadratini chiqarish.
a^{2}-20a+100=-4700
-4800 ni 100 ga qo'shish.
\left(a-10\right)^{2}=-4700
a^{2}-20a+100 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(a-10\right)^{2}}=\sqrt{-4700}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
a-10=10\sqrt{47}i a-10=-10\sqrt{47}i
Qisqartirish.
a=10+10\sqrt{47}i a=-10\sqrt{47}i+10
10 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}