p uchun yechish
p=\frac{14+2\sqrt{5}i}{3}\approx 4,666666667+1,490711985i
p=\frac{-2\sqrt{5}i+14}{3}\approx 4,666666667-1,490711985i
Baham ko'rish
Klipbordga nusxa olish
p\times 12=p\left(3p-13\right)-\left(p-24\right)\times 3
p qiymati 0,24 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini p\left(p-24\right) ga, p-24,p ning eng kichik karralisiga ko‘paytiring.
p\times 12=3p^{2}-13p-\left(p-24\right)\times 3
p ga 3p-13 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
p\times 12=3p^{2}-13p-\left(3p-72\right)
p-24 ga 3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
p\times 12=3p^{2}-13p-3p+72
3p-72 teskarisini topish uchun har birining teskarisini toping.
p\times 12=3p^{2}-16p+72
-16p ni olish uchun -13p va -3p ni birlashtirish.
p\times 12-3p^{2}=-16p+72
Ikkala tarafdan 3p^{2} ni ayirish.
p\times 12-3p^{2}+16p=72
16p ni ikki tarafga qo’shing.
28p-3p^{2}=72
28p ni olish uchun p\times 12 va 16p ni birlashtirish.
28p-3p^{2}-72=0
Ikkala tarafdan 72 ni ayirish.
-3p^{2}+28p-72=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
p=\frac{-28±\sqrt{28^{2}-4\left(-3\right)\left(-72\right)}}{2\left(-3\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -3 ni a, 28 ni b va -72 ni c bilan almashtiring.
p=\frac{-28±\sqrt{784-4\left(-3\right)\left(-72\right)}}{2\left(-3\right)}
28 kvadratini chiqarish.
p=\frac{-28±\sqrt{784+12\left(-72\right)}}{2\left(-3\right)}
-4 ni -3 marotabaga ko'paytirish.
p=\frac{-28±\sqrt{784-864}}{2\left(-3\right)}
12 ni -72 marotabaga ko'paytirish.
p=\frac{-28±\sqrt{-80}}{2\left(-3\right)}
784 ni -864 ga qo'shish.
p=\frac{-28±4\sqrt{5}i}{2\left(-3\right)}
-80 ning kvadrat ildizini chiqarish.
p=\frac{-28±4\sqrt{5}i}{-6}
2 ni -3 marotabaga ko'paytirish.
p=\frac{-28+4\sqrt{5}i}{-6}
p=\frac{-28±4\sqrt{5}i}{-6} tenglamasini yeching, bunda ± musbat. -28 ni 4i\sqrt{5} ga qo'shish.
p=\frac{-2\sqrt{5}i+14}{3}
-28+4i\sqrt{5} ni -6 ga bo'lish.
p=\frac{-4\sqrt{5}i-28}{-6}
p=\frac{-28±4\sqrt{5}i}{-6} tenglamasini yeching, bunda ± manfiy. -28 dan 4i\sqrt{5} ni ayirish.
p=\frac{14+2\sqrt{5}i}{3}
-28-4i\sqrt{5} ni -6 ga bo'lish.
p=\frac{-2\sqrt{5}i+14}{3} p=\frac{14+2\sqrt{5}i}{3}
Tenglama yechildi.
p\times 12=p\left(3p-13\right)-\left(p-24\right)\times 3
p qiymati 0,24 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini p\left(p-24\right) ga, p-24,p ning eng kichik karralisiga ko‘paytiring.
p\times 12=3p^{2}-13p-\left(p-24\right)\times 3
p ga 3p-13 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
p\times 12=3p^{2}-13p-\left(3p-72\right)
p-24 ga 3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
p\times 12=3p^{2}-13p-3p+72
3p-72 teskarisini topish uchun har birining teskarisini toping.
p\times 12=3p^{2}-16p+72
-16p ni olish uchun -13p va -3p ni birlashtirish.
p\times 12-3p^{2}=-16p+72
Ikkala tarafdan 3p^{2} ni ayirish.
p\times 12-3p^{2}+16p=72
16p ni ikki tarafga qo’shing.
28p-3p^{2}=72
28p ni olish uchun p\times 12 va 16p ni birlashtirish.
-3p^{2}+28p=72
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-3p^{2}+28p}{-3}=\frac{72}{-3}
Ikki tarafini -3 ga bo‘ling.
p^{2}+\frac{28}{-3}p=\frac{72}{-3}
-3 ga bo'lish -3 ga ko'paytirishni bekor qiladi.
p^{2}-\frac{28}{3}p=\frac{72}{-3}
28 ni -3 ga bo'lish.
p^{2}-\frac{28}{3}p=-24
72 ni -3 ga bo'lish.
p^{2}-\frac{28}{3}p+\left(-\frac{14}{3}\right)^{2}=-24+\left(-\frac{14}{3}\right)^{2}
-\frac{28}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{14}{3} olish uchun. Keyin, -\frac{14}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
p^{2}-\frac{28}{3}p+\frac{196}{9}=-24+\frac{196}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{14}{3} kvadratini chiqarish.
p^{2}-\frac{28}{3}p+\frac{196}{9}=-\frac{20}{9}
-24 ni \frac{196}{9} ga qo'shish.
\left(p-\frac{14}{3}\right)^{2}=-\frac{20}{9}
p^{2}-\frac{28}{3}p+\frac{196}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(p-\frac{14}{3}\right)^{2}}=\sqrt{-\frac{20}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
p-\frac{14}{3}=\frac{2\sqrt{5}i}{3} p-\frac{14}{3}=-\frac{2\sqrt{5}i}{3}
Qisqartirish.
p=\frac{14+2\sqrt{5}i}{3} p=\frac{-2\sqrt{5}i+14}{3}
\frac{14}{3} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}