r uchun yechish
r=2
Baham ko'rish
Klipbordga nusxa olish
\frac{12}{5}r+\frac{12}{5}\left(-2\right)=\frac{2}{3}\left(3r-2\left(2r-1\right)\right)
\frac{12}{5} ga r-2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{12}{5}r+\frac{12\left(-2\right)}{5}=\frac{2}{3}\left(3r-2\left(2r-1\right)\right)
\frac{12}{5}\left(-2\right) ni yagona kasrga aylantiring.
\frac{12}{5}r+\frac{-24}{5}=\frac{2}{3}\left(3r-2\left(2r-1\right)\right)
-24 hosil qilish uchun 12 va -2 ni ko'paytirish.
\frac{12}{5}r-\frac{24}{5}=\frac{2}{3}\left(3r-2\left(2r-1\right)\right)
\frac{-24}{5} kasri manfiy belgini olib tashlash bilan -\frac{24}{5} sifatida qayta yozilishi mumkin.
\frac{12}{5}r-\frac{24}{5}=\frac{2}{3}\left(3r-4r+2\right)
-2 ga 2r-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{12}{5}r-\frac{24}{5}=\frac{2}{3}\left(-r+2\right)
-r ni olish uchun 3r va -4r ni birlashtirish.
\frac{12}{5}r-\frac{24}{5}=\frac{2}{3}\left(-1\right)r+\frac{2}{3}\times 2
\frac{2}{3} ga -r+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{12}{5}r-\frac{24}{5}=-\frac{2}{3}r+\frac{2}{3}\times 2
-\frac{2}{3} hosil qilish uchun \frac{2}{3} va -1 ni ko'paytirish.
\frac{12}{5}r-\frac{24}{5}=-\frac{2}{3}r+\frac{2\times 2}{3}
\frac{2}{3}\times 2 ni yagona kasrga aylantiring.
\frac{12}{5}r-\frac{24}{5}=-\frac{2}{3}r+\frac{4}{3}
4 hosil qilish uchun 2 va 2 ni ko'paytirish.
\frac{12}{5}r-\frac{24}{5}+\frac{2}{3}r=\frac{4}{3}
\frac{2}{3}r ni ikki tarafga qo’shing.
\frac{46}{15}r-\frac{24}{5}=\frac{4}{3}
\frac{46}{15}r ni olish uchun \frac{12}{5}r va \frac{2}{3}r ni birlashtirish.
\frac{46}{15}r=\frac{4}{3}+\frac{24}{5}
\frac{24}{5} ni ikki tarafga qo’shing.
\frac{46}{15}r=\frac{20}{15}+\frac{72}{15}
3 va 5 ning eng kichik umumiy karralisi 15 ga teng. \frac{4}{3} va \frac{24}{5} ni 15 maxraj bilan kasrlarga aylantirib oling.
\frac{46}{15}r=\frac{20+72}{15}
\frac{20}{15} va \frac{72}{15} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{46}{15}r=\frac{92}{15}
92 olish uchun 20 va 72'ni qo'shing.
r=\frac{92}{15}\times \frac{15}{46}
Ikki tarafini \frac{15}{46} va teskari kasri \frac{46}{15} ga ko‘paytiring.
r=\frac{92\times 15}{15\times 46}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{92}{15} ni \frac{15}{46} ga ko‘paytiring.
r=\frac{92}{46}
Surat va maxrajdagi ikkala 15 ni qisqartiring.
r=2
2 ni olish uchun 92 ni 46 ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}