x uchun yechish
x=5\sqrt{26}+30\approx 55,495097568
x=30-5\sqrt{26}\approx 4,504902432
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(x-10\right)\times 1050+x\times 1050=42x\left(x-10\right)
x qiymati 0,10 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x\left(x-10\right) ga, x,x-10 ning eng kichik karralisiga ko‘paytiring.
1050x-10500+x\times 1050=42x\left(x-10\right)
x-10 ga 1050 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2100x-10500=42x\left(x-10\right)
2100x ni olish uchun 1050x va x\times 1050 ni birlashtirish.
2100x-10500=42x^{2}-420x
42x ga x-10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2100x-10500-42x^{2}=-420x
Ikkala tarafdan 42x^{2} ni ayirish.
2100x-10500-42x^{2}+420x=0
420x ni ikki tarafga qo’shing.
2520x-10500-42x^{2}=0
2520x ni olish uchun 2100x va 420x ni birlashtirish.
-42x^{2}+2520x-10500=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-2520±\sqrt{2520^{2}-4\left(-42\right)\left(-10500\right)}}{2\left(-42\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -42 ni a, 2520 ni b va -10500 ni c bilan almashtiring.
x=\frac{-2520±\sqrt{6350400-4\left(-42\right)\left(-10500\right)}}{2\left(-42\right)}
2520 kvadratini chiqarish.
x=\frac{-2520±\sqrt{6350400+168\left(-10500\right)}}{2\left(-42\right)}
-4 ni -42 marotabaga ko'paytirish.
x=\frac{-2520±\sqrt{6350400-1764000}}{2\left(-42\right)}
168 ni -10500 marotabaga ko'paytirish.
x=\frac{-2520±\sqrt{4586400}}{2\left(-42\right)}
6350400 ni -1764000 ga qo'shish.
x=\frac{-2520±420\sqrt{26}}{2\left(-42\right)}
4586400 ning kvadrat ildizini chiqarish.
x=\frac{-2520±420\sqrt{26}}{-84}
2 ni -42 marotabaga ko'paytirish.
x=\frac{420\sqrt{26}-2520}{-84}
x=\frac{-2520±420\sqrt{26}}{-84} tenglamasini yeching, bunda ± musbat. -2520 ni 420\sqrt{26} ga qo'shish.
x=30-5\sqrt{26}
-2520+420\sqrt{26} ni -84 ga bo'lish.
x=\frac{-420\sqrt{26}-2520}{-84}
x=\frac{-2520±420\sqrt{26}}{-84} tenglamasini yeching, bunda ± manfiy. -2520 dan 420\sqrt{26} ni ayirish.
x=5\sqrt{26}+30
-2520-420\sqrt{26} ni -84 ga bo'lish.
x=30-5\sqrt{26} x=5\sqrt{26}+30
Tenglama yechildi.
\left(x-10\right)\times 1050+x\times 1050=42x\left(x-10\right)
x qiymati 0,10 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x\left(x-10\right) ga, x,x-10 ning eng kichik karralisiga ko‘paytiring.
1050x-10500+x\times 1050=42x\left(x-10\right)
x-10 ga 1050 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2100x-10500=42x\left(x-10\right)
2100x ni olish uchun 1050x va x\times 1050 ni birlashtirish.
2100x-10500=42x^{2}-420x
42x ga x-10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2100x-10500-42x^{2}=-420x
Ikkala tarafdan 42x^{2} ni ayirish.
2100x-10500-42x^{2}+420x=0
420x ni ikki tarafga qo’shing.
2520x-10500-42x^{2}=0
2520x ni olish uchun 2100x va 420x ni birlashtirish.
2520x-42x^{2}=10500
10500 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
-42x^{2}+2520x=10500
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-42x^{2}+2520x}{-42}=\frac{10500}{-42}
Ikki tarafini -42 ga bo‘ling.
x^{2}+\frac{2520}{-42}x=\frac{10500}{-42}
-42 ga bo'lish -42 ga ko'paytirishni bekor qiladi.
x^{2}-60x=\frac{10500}{-42}
2520 ni -42 ga bo'lish.
x^{2}-60x=-250
10500 ni -42 ga bo'lish.
x^{2}-60x+\left(-30\right)^{2}=-250+\left(-30\right)^{2}
-60 ni bo‘lish, x shartining koeffitsienti, 2 ga -30 olish uchun. Keyin, -30 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-60x+900=-250+900
-30 kvadratini chiqarish.
x^{2}-60x+900=650
-250 ni 900 ga qo'shish.
\left(x-30\right)^{2}=650
x^{2}-60x+900 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-30\right)^{2}}=\sqrt{650}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-30=5\sqrt{26} x-30=-5\sqrt{26}
Qisqartirish.
x=5\sqrt{26}+30 x=30-5\sqrt{26}
30 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}