Asosiy tarkibga oʻtish
A uchun yechish
Tick mark Image
B uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{1}{1001}\times 1003=1001A+1002B+\frac{1002}{1001}C
Tenglamaning ikkala tarafini 1003002 ga, 1002,1001 ning eng kichik karralisiga ko‘paytiring.
\frac{1003}{1001}=1001A+1002B+\frac{1002}{1001}C
\frac{1003}{1001} hosil qilish uchun \frac{1}{1001} va 1003 ni ko'paytirish.
1001A+1002B+\frac{1002}{1001}C=\frac{1003}{1001}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
1001A+\frac{1002}{1001}C=\frac{1003}{1001}-1002B
Ikkala tarafdan 1002B ni ayirish.
1001A=\frac{1003}{1001}-1002B-\frac{1002}{1001}C
Ikkala tarafdan \frac{1002}{1001}C ni ayirish.
1001A=-\frac{1002C}{1001}-1002B+\frac{1003}{1001}
Tenglama standart shaklda.
\frac{1001A}{1001}=\frac{-\frac{1002C}{1001}-1002B+\frac{1003}{1001}}{1001}
Ikki tarafini 1001 ga bo‘ling.
A=\frac{-\frac{1002C}{1001}-1002B+\frac{1003}{1001}}{1001}
1001 ga bo'lish 1001 ga ko'paytirishni bekor qiladi.
A=-\frac{1002B}{1001}-\frac{1002C}{1002001}+\frac{1003}{1002001}
\frac{1003}{1001}-1002B-\frac{1002C}{1001} ni 1001 ga bo'lish.
\frac{1}{1001}\times 1003=1001A+1002B+\frac{1002}{1001}C
Tenglamaning ikkala tarafini 1003002 ga, 1002,1001 ning eng kichik karralisiga ko‘paytiring.
\frac{1003}{1001}=1001A+1002B+\frac{1002}{1001}C
\frac{1003}{1001} hosil qilish uchun \frac{1}{1001} va 1003 ni ko'paytirish.
1001A+1002B+\frac{1002}{1001}C=\frac{1003}{1001}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
1002B+\frac{1002}{1001}C=\frac{1003}{1001}-1001A
Ikkala tarafdan 1001A ni ayirish.
1002B=\frac{1003}{1001}-1001A-\frac{1002}{1001}C
Ikkala tarafdan \frac{1002}{1001}C ni ayirish.
1002B=-\frac{1002C}{1001}-1001A+\frac{1003}{1001}
Tenglama standart shaklda.
\frac{1002B}{1002}=\frac{-\frac{1002C}{1001}-1001A+\frac{1003}{1001}}{1002}
Ikki tarafini 1002 ga bo‘ling.
B=\frac{-\frac{1002C}{1001}-1001A+\frac{1003}{1001}}{1002}
1002 ga bo'lish 1002 ga ko'paytirishni bekor qiladi.
B=-\frac{C}{1001}-\frac{1001A}{1002}+\frac{1003}{1003002}
\frac{1003}{1001}-1001A-\frac{1002C}{1001} ni 1002 ga bo'lish.