x uchun yechish
x = \frac{27}{25} = 1\frac{2}{25} = 1,08
x=0
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{10}{9}x^{2}-\frac{6}{5}x=0
\frac{12}{10} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x\left(\frac{10}{9}x-\frac{6}{5}\right)=0
x omili.
x=0 x=\frac{27}{25}
Tenglamani yechish uchun x=0 va \frac{10x}{9}-\frac{6}{5}=0 ni yeching.
\frac{10}{9}x^{2}-\frac{6}{5}x=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-\frac{6}{5}\right)±\sqrt{\left(-\frac{6}{5}\right)^{2}}}{2\times \frac{10}{9}}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \frac{10}{9} ni a, -\frac{6}{5} ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-\frac{6}{5}\right)±\frac{6}{5}}{2\times \frac{10}{9}}
\left(-\frac{6}{5}\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{\frac{6}{5}±\frac{6}{5}}{2\times \frac{10}{9}}
-\frac{6}{5} ning teskarisi \frac{6}{5} ga teng.
x=\frac{\frac{6}{5}±\frac{6}{5}}{\frac{20}{9}}
2 ni \frac{10}{9} marotabaga ko'paytirish.
x=\frac{\frac{12}{5}}{\frac{20}{9}}
x=\frac{\frac{6}{5}±\frac{6}{5}}{\frac{20}{9}} tenglamasini yeching, bunda ± musbat. Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{6}{5} ni \frac{6}{5} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=\frac{27}{25}
\frac{12}{5} ni \frac{20}{9} ga bo'lish \frac{12}{5} ga k'paytirish \frac{20}{9} ga qaytarish.
x=\frac{0}{\frac{20}{9}}
x=\frac{\frac{6}{5}±\frac{6}{5}}{\frac{20}{9}} tenglamasini yeching, bunda ± manfiy. Umumiy maxrajni topib va suratlarni ayirib \frac{6}{5} ni \frac{6}{5} dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
x=0
0 ni \frac{20}{9} ga bo'lish 0 ga k'paytirish \frac{20}{9} ga qaytarish.
x=\frac{27}{25} x=0
Tenglama yechildi.
\frac{10}{9}x^{2}-\frac{6}{5}x=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{\frac{10}{9}x^{2}-\frac{6}{5}x}{\frac{10}{9}}=\frac{0}{\frac{10}{9}}
Tenglamaning ikki tarafini \frac{10}{9} ga bo'lish, bu kasrni qaytarish orqali ikkala tarafga ko'paytirish bilan aynidir.
x^{2}+\left(-\frac{\frac{6}{5}}{\frac{10}{9}}\right)x=\frac{0}{\frac{10}{9}}
\frac{10}{9} ga bo'lish \frac{10}{9} ga ko'paytirishni bekor qiladi.
x^{2}-\frac{27}{25}x=\frac{0}{\frac{10}{9}}
-\frac{6}{5} ni \frac{10}{9} ga bo'lish -\frac{6}{5} ga k'paytirish \frac{10}{9} ga qaytarish.
x^{2}-\frac{27}{25}x=0
0 ni \frac{10}{9} ga bo'lish 0 ga k'paytirish \frac{10}{9} ga qaytarish.
x^{2}-\frac{27}{25}x+\left(-\frac{27}{50}\right)^{2}=\left(-\frac{27}{50}\right)^{2}
-\frac{27}{25} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{27}{50} olish uchun. Keyin, -\frac{27}{50} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{27}{25}x+\frac{729}{2500}=\frac{729}{2500}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{27}{50} kvadratini chiqarish.
\left(x-\frac{27}{50}\right)^{2}=\frac{729}{2500}
x^{2}-\frac{27}{25}x+\frac{729}{2500} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{27}{50}\right)^{2}}=\sqrt{\frac{729}{2500}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{27}{50}=\frac{27}{50} x-\frac{27}{50}=-\frac{27}{50}
Qisqartirish.
x=\frac{27}{25} x=0
\frac{27}{50} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}