x uchun yechish
x=-8
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(x-5\right)\times 10-\left(x-7\right)\times 8=\left(x+3\right)\left(x+10\right)
x qiymati -3,5,7 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-7\right)\left(x-5\right)\left(x+3\right) ga, \left(x+3\right)\left(x-7\right),\left(x+3\right)\left(x-5\right),\left(x-5\right)\left(x-7\right) ning eng kichik karralisiga ko‘paytiring.
10x-50-\left(x-7\right)\times 8=\left(x+3\right)\left(x+10\right)
x-5 ga 10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
10x-50-\left(8x-56\right)=\left(x+3\right)\left(x+10\right)
x-7 ga 8 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
10x-50-8x+56=\left(x+3\right)\left(x+10\right)
8x-56 teskarisini topish uchun har birining teskarisini toping.
2x-50+56=\left(x+3\right)\left(x+10\right)
2x ni olish uchun 10x va -8x ni birlashtirish.
2x+6=\left(x+3\right)\left(x+10\right)
6 olish uchun -50 va 56'ni qo'shing.
2x+6=x^{2}+13x+30
x+3 ga x+10 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x+6-x^{2}=13x+30
Ikkala tarafdan x^{2} ni ayirish.
2x+6-x^{2}-13x=30
Ikkala tarafdan 13x ni ayirish.
-11x+6-x^{2}=30
-11x ni olish uchun 2x va -13x ni birlashtirish.
-11x+6-x^{2}-30=0
Ikkala tarafdan 30 ni ayirish.
-11x-24-x^{2}=0
-24 olish uchun 6 dan 30 ni ayirish.
-x^{2}-11x-24=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-1\right)\left(-24\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, -11 ni b va -24 ni c bilan almashtiring.
x=\frac{-\left(-11\right)±\sqrt{121-4\left(-1\right)\left(-24\right)}}{2\left(-1\right)}
-11 kvadratini chiqarish.
x=\frac{-\left(-11\right)±\sqrt{121+4\left(-24\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-11\right)±\sqrt{121-96}}{2\left(-1\right)}
4 ni -24 marotabaga ko'paytirish.
x=\frac{-\left(-11\right)±\sqrt{25}}{2\left(-1\right)}
121 ni -96 ga qo'shish.
x=\frac{-\left(-11\right)±5}{2\left(-1\right)}
25 ning kvadrat ildizini chiqarish.
x=\frac{11±5}{2\left(-1\right)}
-11 ning teskarisi 11 ga teng.
x=\frac{11±5}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{16}{-2}
x=\frac{11±5}{-2} tenglamasini yeching, bunda ± musbat. 11 ni 5 ga qo'shish.
x=-8
16 ni -2 ga bo'lish.
x=\frac{6}{-2}
x=\frac{11±5}{-2} tenglamasini yeching, bunda ± manfiy. 11 dan 5 ni ayirish.
x=-3
6 ni -2 ga bo'lish.
x=-8 x=-3
Tenglama yechildi.
x=-8
x qiymati -3 teng bo‘lmaydi.
\left(x-5\right)\times 10-\left(x-7\right)\times 8=\left(x+3\right)\left(x+10\right)
x qiymati -3,5,7 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-7\right)\left(x-5\right)\left(x+3\right) ga, \left(x+3\right)\left(x-7\right),\left(x+3\right)\left(x-5\right),\left(x-5\right)\left(x-7\right) ning eng kichik karralisiga ko‘paytiring.
10x-50-\left(x-7\right)\times 8=\left(x+3\right)\left(x+10\right)
x-5 ga 10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
10x-50-\left(8x-56\right)=\left(x+3\right)\left(x+10\right)
x-7 ga 8 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
10x-50-8x+56=\left(x+3\right)\left(x+10\right)
8x-56 teskarisini topish uchun har birining teskarisini toping.
2x-50+56=\left(x+3\right)\left(x+10\right)
2x ni olish uchun 10x va -8x ni birlashtirish.
2x+6=\left(x+3\right)\left(x+10\right)
6 olish uchun -50 va 56'ni qo'shing.
2x+6=x^{2}+13x+30
x+3 ga x+10 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x+6-x^{2}=13x+30
Ikkala tarafdan x^{2} ni ayirish.
2x+6-x^{2}-13x=30
Ikkala tarafdan 13x ni ayirish.
-11x+6-x^{2}=30
-11x ni olish uchun 2x va -13x ni birlashtirish.
-11x-x^{2}=30-6
Ikkala tarafdan 6 ni ayirish.
-11x-x^{2}=24
24 olish uchun 30 dan 6 ni ayirish.
-x^{2}-11x=24
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}-11x}{-1}=\frac{24}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\left(-\frac{11}{-1}\right)x=\frac{24}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}+11x=\frac{24}{-1}
-11 ni -1 ga bo'lish.
x^{2}+11x=-24
24 ni -1 ga bo'lish.
x^{2}+11x+\left(\frac{11}{2}\right)^{2}=-24+\left(\frac{11}{2}\right)^{2}
11 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{11}{2} olish uchun. Keyin, \frac{11}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+11x+\frac{121}{4}=-24+\frac{121}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{11}{2} kvadratini chiqarish.
x^{2}+11x+\frac{121}{4}=\frac{25}{4}
-24 ni \frac{121}{4} ga qo'shish.
\left(x+\frac{11}{2}\right)^{2}=\frac{25}{4}
x^{2}+11x+\frac{121}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{11}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{11}{2}=\frac{5}{2} x+\frac{11}{2}=-\frac{5}{2}
Qisqartirish.
x=-3 x=-8
Tenglamaning ikkala tarafidan \frac{11}{2} ni ayirish.
x=-8
x qiymati -3 teng bo‘lmaydi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}