β uchun yechish
\beta =\frac{5}{9}\approx 0,555555556
Baham ko'rish
Klipbordga nusxa olish
10\beta \times 33=\beta ^{2}\times 9\times 33\times 2
\beta qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 1089\beta ^{2} ga ko'paytirish.
330\beta =\beta ^{2}\times 9\times 33\times 2
330 hosil qilish uchun 10 va 33 ni ko'paytirish.
330\beta =\beta ^{2}\times 297\times 2
297 hosil qilish uchun 9 va 33 ni ko'paytirish.
330\beta =\beta ^{2}\times 594
594 hosil qilish uchun 297 va 2 ni ko'paytirish.
330\beta -\beta ^{2}\times 594=0
Ikkala tarafdan \beta ^{2}\times 594 ni ayirish.
330\beta -594\beta ^{2}=0
-594 hosil qilish uchun -1 va 594 ni ko'paytirish.
\beta \left(330-594\beta \right)=0
\beta omili.
\beta =0 \beta =\frac{5}{9}
Tenglamani yechish uchun \beta =0 va 330-594\beta =0 ni yeching.
\beta =\frac{5}{9}
\beta qiymati 0 teng bo‘lmaydi.
10\beta \times 33=\beta ^{2}\times 9\times 33\times 2
\beta qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 1089\beta ^{2} ga ko'paytirish.
330\beta =\beta ^{2}\times 9\times 33\times 2
330 hosil qilish uchun 10 va 33 ni ko'paytirish.
330\beta =\beta ^{2}\times 297\times 2
297 hosil qilish uchun 9 va 33 ni ko'paytirish.
330\beta =\beta ^{2}\times 594
594 hosil qilish uchun 297 va 2 ni ko'paytirish.
330\beta -\beta ^{2}\times 594=0
Ikkala tarafdan \beta ^{2}\times 594 ni ayirish.
330\beta -594\beta ^{2}=0
-594 hosil qilish uchun -1 va 594 ni ko'paytirish.
-594\beta ^{2}+330\beta =0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
\beta =\frac{-330±\sqrt{330^{2}}}{2\left(-594\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -594 ni a, 330 ni b va 0 ni c bilan almashtiring.
\beta =\frac{-330±330}{2\left(-594\right)}
330^{2} ning kvadrat ildizini chiqarish.
\beta =\frac{-330±330}{-1188}
2 ni -594 marotabaga ko'paytirish.
\beta =\frac{0}{-1188}
\beta =\frac{-330±330}{-1188} tenglamasini yeching, bunda ± musbat. -330 ni 330 ga qo'shish.
\beta =0
0 ni -1188 ga bo'lish.
\beta =-\frac{660}{-1188}
\beta =\frac{-330±330}{-1188} tenglamasini yeching, bunda ± manfiy. -330 dan 330 ni ayirish.
\beta =\frac{5}{9}
\frac{-660}{-1188} ulushini 132 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\beta =0 \beta =\frac{5}{9}
Tenglama yechildi.
\beta =\frac{5}{9}
\beta qiymati 0 teng bo‘lmaydi.
10\beta \times 33=\beta ^{2}\times 9\times 33\times 2
\beta qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 1089\beta ^{2} ga ko'paytirish.
330\beta =\beta ^{2}\times 9\times 33\times 2
330 hosil qilish uchun 10 va 33 ni ko'paytirish.
330\beta =\beta ^{2}\times 297\times 2
297 hosil qilish uchun 9 va 33 ni ko'paytirish.
330\beta =\beta ^{2}\times 594
594 hosil qilish uchun 297 va 2 ni ko'paytirish.
330\beta -\beta ^{2}\times 594=0
Ikkala tarafdan \beta ^{2}\times 594 ni ayirish.
330\beta -594\beta ^{2}=0
-594 hosil qilish uchun -1 va 594 ni ko'paytirish.
-594\beta ^{2}+330\beta =0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-594\beta ^{2}+330\beta }{-594}=\frac{0}{-594}
Ikki tarafini -594 ga bo‘ling.
\beta ^{2}+\frac{330}{-594}\beta =\frac{0}{-594}
-594 ga bo'lish -594 ga ko'paytirishni bekor qiladi.
\beta ^{2}-\frac{5}{9}\beta =\frac{0}{-594}
\frac{330}{-594} ulushini 66 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\beta ^{2}-\frac{5}{9}\beta =0
0 ni -594 ga bo'lish.
\beta ^{2}-\frac{5}{9}\beta +\left(-\frac{5}{18}\right)^{2}=\left(-\frac{5}{18}\right)^{2}
-\frac{5}{9} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{5}{18} olish uchun. Keyin, -\frac{5}{18} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
\beta ^{2}-\frac{5}{9}\beta +\frac{25}{324}=\frac{25}{324}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{5}{18} kvadratini chiqarish.
\left(\beta -\frac{5}{18}\right)^{2}=\frac{25}{324}
\beta ^{2}-\frac{5}{9}\beta +\frac{25}{324} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(\beta -\frac{5}{18}\right)^{2}}=\sqrt{\frac{25}{324}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
\beta -\frac{5}{18}=\frac{5}{18} \beta -\frac{5}{18}=-\frac{5}{18}
Qisqartirish.
\beta =\frac{5}{9} \beta =0
\frac{5}{18} ni tenglamaning ikkala tarafiga qo'shish.
\beta =\frac{5}{9}
\beta qiymati 0 teng bo‘lmaydi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}