v uchun yechish
v = -\frac{5320}{263} = -20\frac{60}{263} \approx -20,228136882
Baham ko'rish
Klipbordga nusxa olish
40\times 133+40v\left(-\frac{1}{40}\right)=-2v\left(133-1\right)
v qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 40v ga, v,40,-20 ning eng kichik karralisiga ko‘paytiring.
5320+40v\left(-\frac{1}{40}\right)=-2v\left(133-1\right)
5320 hosil qilish uchun 40 va 133 ni ko'paytirish.
5320-v=-2v\left(133-1\right)
40 va 40 ni qisqartiring.
5320-v=-2v\times 132
132 olish uchun 133 dan 1 ni ayirish.
5320-v=-264v
-264 hosil qilish uchun -2 va 132 ni ko'paytirish.
5320-v+264v=0
264v ni ikki tarafga qo’shing.
5320+263v=0
263v ni olish uchun -v va 264v ni birlashtirish.
263v=-5320
Ikkala tarafdan 5320 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
v=\frac{-5320}{263}
Ikki tarafini 263 ga bo‘ling.
v=-\frac{5320}{263}
\frac{-5320}{263} kasri manfiy belgini olib tashlash bilan -\frac{5320}{263} sifatida qayta yozilishi mumkin.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}