Baholash
-\frac{1}{2}i=-0,5i
Ashyoviy qism
0
Baham ko'rish
Klipbordga nusxa olish
\frac{1-i}{1-\left(-1\right)}+\frac{1}{1-i}+\frac{1-2i}{2i}
2 daraja ko‘rsatkichini i ga hisoblang va -1 ni qiymatni oling.
\frac{1-i}{1+1}+\frac{1}{1-i}+\frac{1-2i}{2i}
-1 ning teskarisi 1 ga teng.
\frac{1-i}{2}+\frac{1}{1-i}+\frac{1-2i}{2i}
2 olish uchun 1 va 1'ni qo'shing.
\frac{1}{2}-\frac{1}{2}i+\frac{1}{1-i}+\frac{1-2i}{2i}
\frac{1}{2}-\frac{1}{2}i ni olish uchun 1-i ni 2 ga bo‘ling.
\frac{1}{2}-\frac{1}{2}i+\frac{1\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}+\frac{1-2i}{2i}
\frac{1}{1-i}ning surat va maxrajini murakkab tutash maxraj 1+i bilan ko‘paytiring.
\frac{1}{2}-\frac{1}{2}i+\frac{1+i}{2}+\frac{1-2i}{2i}
\frac{1\left(1+i\right)}{\left(1-i\right)\left(1+i\right)} ichidagi ko‘paytirishlarni bajaring.
\frac{1}{2}-\frac{1}{2}i+\left(\frac{1}{2}+\frac{1}{2}i\right)+\frac{1-2i}{2i}
\frac{1}{2}+\frac{1}{2}i ni olish uchun 1+i ni 2 ga bo‘ling.
\frac{1-2i}{2i}+1
Qo‘shishlarni bajaring.
\frac{2+i}{-2}+1
\frac{1-2i}{2i}ning surat va maxrajini xayolik birlik i bilan ko‘paytiring.
-1-\frac{1}{2}i+1
-1-\frac{1}{2}i ni olish uchun 2+i ni -2 ga bo‘ling.
-\frac{1}{2}i
-\frac{1}{2}i olish uchun -1-\frac{1}{2}i va 1'ni qo'shing.
Re(\frac{1-i}{1-\left(-1\right)}+\frac{1}{1-i}+\frac{1-2i}{2i})
2 daraja ko‘rsatkichini i ga hisoblang va -1 ni qiymatni oling.
Re(\frac{1-i}{1+1}+\frac{1}{1-i}+\frac{1-2i}{2i})
-1 ning teskarisi 1 ga teng.
Re(\frac{1-i}{2}+\frac{1}{1-i}+\frac{1-2i}{2i})
2 olish uchun 1 va 1'ni qo'shing.
Re(\frac{1}{2}-\frac{1}{2}i+\frac{1}{1-i}+\frac{1-2i}{2i})
\frac{1}{2}-\frac{1}{2}i ni olish uchun 1-i ni 2 ga bo‘ling.
Re(\frac{1}{2}-\frac{1}{2}i+\frac{1\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}+\frac{1-2i}{2i})
\frac{1}{1-i}ning surat va maxrajini murakkab tutash maxraj 1+i bilan ko‘paytiring.
Re(\frac{1}{2}-\frac{1}{2}i+\frac{1+i}{2}+\frac{1-2i}{2i})
\frac{1\left(1+i\right)}{\left(1-i\right)\left(1+i\right)} ichidagi ko‘paytirishlarni bajaring.
Re(\frac{1}{2}-\frac{1}{2}i+\left(\frac{1}{2}+\frac{1}{2}i\right)+\frac{1-2i}{2i})
\frac{1}{2}+\frac{1}{2}i ni olish uchun 1+i ni 2 ga bo‘ling.
Re(\frac{1-2i}{2i}+1)
\frac{1}{2}-\frac{1}{2}i+\left(\frac{1}{2}+\frac{1}{2}i\right) ichida qo‘shishlarni bajaring.
Re(\frac{2+i}{-2}+1)
\frac{1-2i}{2i}ning surat va maxrajini xayolik birlik i bilan ko‘paytiring.
Re(-1-\frac{1}{2}i+1)
-1-\frac{1}{2}i ni olish uchun 2+i ni -2 ga bo‘ling.
Re(-\frac{1}{2}i)
-\frac{1}{2}i olish uchun -1-\frac{1}{2}i va 1'ni qo'shing.
0
-\frac{1}{2}i ning real qismi – 0.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}