Baholash
\frac{10-x^{2}}{x-3}
x ga nisbatan hosilani topish
\frac{-x^{2}+6x-10}{\left(x-3\right)^{2}}
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{1}{x-3}+\frac{\left(-x-3\right)\left(x-3\right)}{x-3}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. -x-3 ni \frac{x-3}{x-3} marotabaga ko'paytirish.
\frac{1+\left(-x-3\right)\left(x-3\right)}{x-3}
\frac{1}{x-3} va \frac{\left(-x-3\right)\left(x-3\right)}{x-3} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{1-x^{2}+3x-3x+9}{x-3}
1+\left(-x-3\right)\left(x-3\right) ichidagi ko‘paytirishlarni bajaring.
\frac{10-x^{2}}{x-3}
1-x^{2}+3x-3x+9 kabi iboralarga o‘xshab birlashtiring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x-3}+\frac{\left(-x-3\right)\left(x-3\right)}{x-3})
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. -x-3 ni \frac{x-3}{x-3} marotabaga ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1+\left(-x-3\right)\left(x-3\right)}{x-3})
\frac{1}{x-3} va \frac{\left(-x-3\right)\left(x-3\right)}{x-3} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1-x^{2}+3x-3x+9}{x-3})
1+\left(-x-3\right)\left(x-3\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{10-x^{2}}{x-3})
1-x^{2}+3x-3x+9 kabi iboralarga o‘xshab birlashtiring.
\frac{\left(x^{1}-3\right)\frac{\mathrm{d}}{\mathrm{d}x}(-x^{2}+10)-\left(-x^{2}+10\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-3)}{\left(x^{1}-3\right)^{2}}
Har qanday ikki differensial funksiya uchun ikki funksiyaning koeffitsient hosilasi raqamlagichning hosila marotabasi maxraj minusi va barchasi kvadrat maxrajiga bo'lingan.
\frac{\left(x^{1}-3\right)\times 2\left(-1\right)x^{2-1}-\left(-x^{2}+10\right)x^{1-1}}{\left(x^{1}-3\right)^{2}}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
\frac{\left(x^{1}-3\right)\left(-2\right)x^{1}-\left(-x^{2}+10\right)x^{0}}{\left(x^{1}-3\right)^{2}}
Arifmetik hisobni amalga oshirish.
\frac{x^{1}\left(-2\right)x^{1}-3\left(-2\right)x^{1}-\left(-x^{2}x^{0}+10x^{0}\right)}{\left(x^{1}-3\right)^{2}}
Distributiv xususiyatdan foydalanib kengaytirish.
\frac{-2x^{1+1}-3\left(-2\right)x^{1}-\left(-x^{2}+10x^{0}\right)}{\left(x^{1}-3\right)^{2}}
Ayni daraja ko'rsatkichlarini ko'paytirish uchun ularning darajalarini qo'shing.
\frac{-2x^{2}+6x^{1}-\left(-x^{2}+10x^{0}\right)}{\left(x^{1}-3\right)^{2}}
Arifmetik hisobni amalga oshirish.
\frac{-2x^{2}+6x^{1}-\left(-x^{2}\right)-10x^{0}}{\left(x^{1}-3\right)^{2}}
Keraksiz qavslarni olib tashlash.
\frac{\left(-2-\left(-1\right)\right)x^{2}+6x^{1}-10x^{0}}{\left(x^{1}-3\right)^{2}}
O'xshash hadlarni birlashtirish.
\frac{-x^{2}+6x^{1}-10x^{0}}{\left(x^{1}-3\right)^{2}}
-2 dan -1 ni ayirish.
\frac{-x^{2}+6x-10x^{0}}{\left(x-3\right)^{2}}
Har qanday t sharti uchun t^{1}=t.
\frac{-x^{2}+6x-10\times 1}{\left(x-3\right)^{2}}
Har qanday t sharti uchun (0 bundan mustasno) t^{0}=1.
\frac{-x^{2}+6x-10}{\left(x-3\right)^{2}}
Har qanday t sharti uchun t\times 1=t va 1t=t.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}