Baholash
\frac{x+1}{x^{2}-9}
x ga nisbatan hosilani topish
\frac{-x^{2}-2x-9}{\left(x^{2}-9\right)^{2}}
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{1}{x-3}-\frac{2}{\left(x-3\right)\left(x+3\right)}
Faktor: x^{2}-9.
\frac{x+3}{\left(x-3\right)\left(x+3\right)}-\frac{2}{\left(x-3\right)\left(x+3\right)}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x-3 va \left(x-3\right)\left(x+3\right) ning eng kichik umumiy karralisi \left(x-3\right)\left(x+3\right). \frac{1}{x-3} ni \frac{x+3}{x+3} marotabaga ko'paytirish.
\frac{x+3-2}{\left(x-3\right)\left(x+3\right)}
\frac{x+3}{\left(x-3\right)\left(x+3\right)} va \frac{2}{\left(x-3\right)\left(x+3\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{x+1}{\left(x-3\right)\left(x+3\right)}
x+3-2 kabi iboralarga o‘xshab birlashtiring.
\frac{x+1}{x^{2}-9}
\left(x-3\right)\left(x+3\right) ni kengaytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x-3}-\frac{2}{\left(x-3\right)\left(x+3\right)})
Faktor: x^{2}-9.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+3}{\left(x-3\right)\left(x+3\right)}-\frac{2}{\left(x-3\right)\left(x+3\right)})
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x-3 va \left(x-3\right)\left(x+3\right) ning eng kichik umumiy karralisi \left(x-3\right)\left(x+3\right). \frac{1}{x-3} ni \frac{x+3}{x+3} marotabaga ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+3-2}{\left(x-3\right)\left(x+3\right)})
\frac{x+3}{\left(x-3\right)\left(x+3\right)} va \frac{2}{\left(x-3\right)\left(x+3\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+1}{\left(x-3\right)\left(x+3\right)})
x+3-2 kabi iboralarga o‘xshab birlashtiring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+1}{x^{2}-9})
Hisoblang: \left(x-3\right)\left(x+3\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 3 kvadratini chiqarish.
\frac{\left(x^{2}-9\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+1)-\left(x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-9)}{\left(x^{2}-9\right)^{2}}
Har qanday ikki differensial funksiya uchun ikki funksiyaning koeffitsient hosilasi raqamlagichning hosila marotabasi maxraj minusi va barchasi kvadrat maxrajiga bo'lingan.
\frac{\left(x^{2}-9\right)x^{1-1}-\left(x^{1}+1\right)\times 2x^{2-1}}{\left(x^{2}-9\right)^{2}}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
\frac{\left(x^{2}-9\right)x^{0}-\left(x^{1}+1\right)\times 2x^{1}}{\left(x^{2}-9\right)^{2}}
Arifmetik hisobni amalga oshirish.
\frac{x^{2}x^{0}-9x^{0}-\left(x^{1}\times 2x^{1}+2x^{1}\right)}{\left(x^{2}-9\right)^{2}}
Distributiv xususiyatdan foydalanib kengaytirish.
\frac{x^{2}-9x^{0}-\left(2x^{1+1}+2x^{1}\right)}{\left(x^{2}-9\right)^{2}}
Ayni daraja ko'rsatkichlarini ko'paytirish uchun ularning darajalarini qo'shing.
\frac{x^{2}-9x^{0}-\left(2x^{2}+2x^{1}\right)}{\left(x^{2}-9\right)^{2}}
Arifmetik hisobni amalga oshirish.
\frac{x^{2}-9x^{0}-2x^{2}-2x^{1}}{\left(x^{2}-9\right)^{2}}
Keraksiz qavslarni olib tashlash.
\frac{\left(1-2\right)x^{2}-9x^{0}-2x^{1}}{\left(x^{2}-9\right)^{2}}
O'xshash hadlarni birlashtirish.
\frac{-x^{2}-9x^{0}-2x^{1}}{\left(x^{2}-9\right)^{2}}
1 dan 2 ni ayirish.
\frac{-x^{2}-9x^{0}-2x}{\left(x^{2}-9\right)^{2}}
Har qanday t sharti uchun t^{1}=t.
\frac{-x^{2}-9-2x}{\left(x^{2}-9\right)^{2}}
Har qanday t sharti uchun (0 bundan mustasno) t^{0}=1.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}