x uchun yechish
x = \frac{28}{9} = 3\frac{1}{9} \approx 3,111111111
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(x-2\right)\left(x-1\right)-\left(x-3\right)\left(x-1\right)\times 10-\left(x-3\right)\left(x-2\right)\times 0=0
x qiymati 1,2,3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-3\right)\left(x-2\right)\left(x-1\right) ga, x-3,x-2,x-1 ning eng kichik karralisiga ko‘paytiring.
x^{2}-3x+2-\left(x-3\right)\left(x-1\right)\times 10-\left(x-3\right)\left(x-2\right)\times 0=0
x-2 ga x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}-3x+2-\left(x^{2}-4x+3\right)\times 10-\left(x-3\right)\left(x-2\right)\times 0=0
x-3 ga x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}-3x+2-\left(10x^{2}-40x+30\right)-\left(x-3\right)\left(x-2\right)\times 0=0
x^{2}-4x+3 ga 10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-3x+2-10x^{2}+40x-30-\left(x-3\right)\left(x-2\right)\times 0=0
10x^{2}-40x+30 teskarisini topish uchun har birining teskarisini toping.
-9x^{2}-3x+2+40x-30-\left(x-3\right)\left(x-2\right)\times 0=0
-9x^{2} ni olish uchun x^{2} va -10x^{2} ni birlashtirish.
-9x^{2}+37x+2-30-\left(x-3\right)\left(x-2\right)\times 0=0
37x ni olish uchun -3x va 40x ni birlashtirish.
-9x^{2}+37x-28-\left(x-3\right)\left(x-2\right)\times 0=0
-28 olish uchun 2 dan 30 ni ayirish.
-9x^{2}+37x-28+0=0
Har qanday sonni nolga ko‘paytirsangiz, nol chiqadi.
-9x^{2}+37x-28=0
-28 olish uchun -28 va 0'ni qo'shing.
a+b=37 ab=-9\left(-28\right)=252
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon -9x^{2}+ax+bx-28 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,252 2,126 3,84 4,63 6,42 7,36 9,28 12,21 14,18
ab musbat boʻlganda, a va b da bir xil belgi bor. a+b musbat boʻlganda, a va b ikkisi ham musbat. 252-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1+252=253 2+126=128 3+84=87 4+63=67 6+42=48 7+36=43 9+28=37 12+21=33 14+18=32
Har bir juftlik yigʻindisini hisoblang.
a=28 b=9
Yechim – 37 yigʻindisini beruvchi juftlik.
\left(-9x^{2}+28x\right)+\left(9x-28\right)
-9x^{2}+37x-28 ni \left(-9x^{2}+28x\right)+\left(9x-28\right) sifatida qaytadan yozish.
-x\left(9x-28\right)+9x-28
-9x^{2}+28x ichida -x ni ajrating.
\left(9x-28\right)\left(-x+1\right)
Distributiv funktsiyasidan foydalangan holda 9x-28 umumiy terminini chiqaring.
x=\frac{28}{9} x=1
Tenglamani yechish uchun 9x-28=0 va -x+1=0 ni yeching.
x=\frac{28}{9}
x qiymati 1 teng bo‘lmaydi.
\left(x-2\right)\left(x-1\right)-\left(x-3\right)\left(x-1\right)\times 10-\left(x-3\right)\left(x-2\right)\times 0=0
x qiymati 1,2,3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-3\right)\left(x-2\right)\left(x-1\right) ga, x-3,x-2,x-1 ning eng kichik karralisiga ko‘paytiring.
x^{2}-3x+2-\left(x-3\right)\left(x-1\right)\times 10-\left(x-3\right)\left(x-2\right)\times 0=0
x-2 ga x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}-3x+2-\left(x^{2}-4x+3\right)\times 10-\left(x-3\right)\left(x-2\right)\times 0=0
x-3 ga x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}-3x+2-\left(10x^{2}-40x+30\right)-\left(x-3\right)\left(x-2\right)\times 0=0
x^{2}-4x+3 ga 10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-3x+2-10x^{2}+40x-30-\left(x-3\right)\left(x-2\right)\times 0=0
10x^{2}-40x+30 teskarisini topish uchun har birining teskarisini toping.
-9x^{2}-3x+2+40x-30-\left(x-3\right)\left(x-2\right)\times 0=0
-9x^{2} ni olish uchun x^{2} va -10x^{2} ni birlashtirish.
-9x^{2}+37x+2-30-\left(x-3\right)\left(x-2\right)\times 0=0
37x ni olish uchun -3x va 40x ni birlashtirish.
-9x^{2}+37x-28-\left(x-3\right)\left(x-2\right)\times 0=0
-28 olish uchun 2 dan 30 ni ayirish.
-9x^{2}+37x-28+0=0
Har qanday sonni nolga ko‘paytirsangiz, nol chiqadi.
-9x^{2}+37x-28=0
-28 olish uchun -28 va 0'ni qo'shing.
x=\frac{-37±\sqrt{37^{2}-4\left(-9\right)\left(-28\right)}}{2\left(-9\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -9 ni a, 37 ni b va -28 ni c bilan almashtiring.
x=\frac{-37±\sqrt{1369-4\left(-9\right)\left(-28\right)}}{2\left(-9\right)}
37 kvadratini chiqarish.
x=\frac{-37±\sqrt{1369+36\left(-28\right)}}{2\left(-9\right)}
-4 ni -9 marotabaga ko'paytirish.
x=\frac{-37±\sqrt{1369-1008}}{2\left(-9\right)}
36 ni -28 marotabaga ko'paytirish.
x=\frac{-37±\sqrt{361}}{2\left(-9\right)}
1369 ni -1008 ga qo'shish.
x=\frac{-37±19}{2\left(-9\right)}
361 ning kvadrat ildizini chiqarish.
x=\frac{-37±19}{-18}
2 ni -9 marotabaga ko'paytirish.
x=-\frac{18}{-18}
x=\frac{-37±19}{-18} tenglamasini yeching, bunda ± musbat. -37 ni 19 ga qo'shish.
x=1
-18 ni -18 ga bo'lish.
x=-\frac{56}{-18}
x=\frac{-37±19}{-18} tenglamasini yeching, bunda ± manfiy. -37 dan 19 ni ayirish.
x=\frac{28}{9}
\frac{-56}{-18} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=1 x=\frac{28}{9}
Tenglama yechildi.
x=\frac{28}{9}
x qiymati 1 teng bo‘lmaydi.
\left(x-2\right)\left(x-1\right)-\left(x-3\right)\left(x-1\right)\times 10-\left(x-3\right)\left(x-2\right)\times 0=0
x qiymati 1,2,3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-3\right)\left(x-2\right)\left(x-1\right) ga, x-3,x-2,x-1 ning eng kichik karralisiga ko‘paytiring.
x^{2}-3x+2-\left(x-3\right)\left(x-1\right)\times 10-\left(x-3\right)\left(x-2\right)\times 0=0
x-2 ga x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}-3x+2-\left(x^{2}-4x+3\right)\times 10-\left(x-3\right)\left(x-2\right)\times 0=0
x-3 ga x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}-3x+2-\left(10x^{2}-40x+30\right)-\left(x-3\right)\left(x-2\right)\times 0=0
x^{2}-4x+3 ga 10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-3x+2-10x^{2}+40x-30-\left(x-3\right)\left(x-2\right)\times 0=0
10x^{2}-40x+30 teskarisini topish uchun har birining teskarisini toping.
-9x^{2}-3x+2+40x-30-\left(x-3\right)\left(x-2\right)\times 0=0
-9x^{2} ni olish uchun x^{2} va -10x^{2} ni birlashtirish.
-9x^{2}+37x+2-30-\left(x-3\right)\left(x-2\right)\times 0=0
37x ni olish uchun -3x va 40x ni birlashtirish.
-9x^{2}+37x-28-\left(x-3\right)\left(x-2\right)\times 0=0
-28 olish uchun 2 dan 30 ni ayirish.
-9x^{2}+37x-28+0=0
Har qanday sonni nolga ko‘paytirsangiz, nol chiqadi.
-9x^{2}+37x-28=0
-28 olish uchun -28 va 0'ni qo'shing.
-9x^{2}+37x=28
28 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
\frac{-9x^{2}+37x}{-9}=\frac{28}{-9}
Ikki tarafini -9 ga bo‘ling.
x^{2}+\frac{37}{-9}x=\frac{28}{-9}
-9 ga bo'lish -9 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{37}{9}x=\frac{28}{-9}
37 ni -9 ga bo'lish.
x^{2}-\frac{37}{9}x=-\frac{28}{9}
28 ni -9 ga bo'lish.
x^{2}-\frac{37}{9}x+\left(-\frac{37}{18}\right)^{2}=-\frac{28}{9}+\left(-\frac{37}{18}\right)^{2}
-\frac{37}{9} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{37}{18} olish uchun. Keyin, -\frac{37}{18} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{37}{9}x+\frac{1369}{324}=-\frac{28}{9}+\frac{1369}{324}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{37}{18} kvadratini chiqarish.
x^{2}-\frac{37}{9}x+\frac{1369}{324}=\frac{361}{324}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{28}{9} ni \frac{1369}{324} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{37}{18}\right)^{2}=\frac{361}{324}
x^{2}-\frac{37}{9}x+\frac{1369}{324} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{37}{18}\right)^{2}}=\sqrt{\frac{361}{324}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{37}{18}=\frac{19}{18} x-\frac{37}{18}=-\frac{19}{18}
Qisqartirish.
x=\frac{28}{9} x=1
\frac{37}{18} ni tenglamaning ikkala tarafiga qo'shish.
x=\frac{28}{9}
x qiymati 1 teng bo‘lmaydi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}