Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4x-16+4x-4=5\left(x-4\right)\left(x-1\right)
x qiymati 1,4 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 4\left(x-4\right)\left(x-1\right) ga, x-1,x-4,4 ning eng kichik karralisiga ko‘paytiring.
8x-16-4=5\left(x-4\right)\left(x-1\right)
8x ni olish uchun 4x va 4x ni birlashtirish.
8x-20=5\left(x-4\right)\left(x-1\right)
-20 olish uchun -16 dan 4 ni ayirish.
8x-20=\left(5x-20\right)\left(x-1\right)
5 ga x-4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
8x-20=5x^{2}-25x+20
5x-20 ga x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
8x-20-5x^{2}=-25x+20
Ikkala tarafdan 5x^{2} ni ayirish.
8x-20-5x^{2}+25x=20
25x ni ikki tarafga qo’shing.
33x-20-5x^{2}=20
33x ni olish uchun 8x va 25x ni birlashtirish.
33x-20-5x^{2}-20=0
Ikkala tarafdan 20 ni ayirish.
33x-40-5x^{2}=0
-40 olish uchun -20 dan 20 ni ayirish.
-5x^{2}+33x-40=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-33±\sqrt{33^{2}-4\left(-5\right)\left(-40\right)}}{2\left(-5\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -5 ni a, 33 ni b va -40 ni c bilan almashtiring.
x=\frac{-33±\sqrt{1089-4\left(-5\right)\left(-40\right)}}{2\left(-5\right)}
33 kvadratini chiqarish.
x=\frac{-33±\sqrt{1089+20\left(-40\right)}}{2\left(-5\right)}
-4 ni -5 marotabaga ko'paytirish.
x=\frac{-33±\sqrt{1089-800}}{2\left(-5\right)}
20 ni -40 marotabaga ko'paytirish.
x=\frac{-33±\sqrt{289}}{2\left(-5\right)}
1089 ni -800 ga qo'shish.
x=\frac{-33±17}{2\left(-5\right)}
289 ning kvadrat ildizini chiqarish.
x=\frac{-33±17}{-10}
2 ni -5 marotabaga ko'paytirish.
x=-\frac{16}{-10}
x=\frac{-33±17}{-10} tenglamasini yeching, bunda ± musbat. -33 ni 17 ga qo'shish.
x=\frac{8}{5}
\frac{-16}{-10} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{50}{-10}
x=\frac{-33±17}{-10} tenglamasini yeching, bunda ± manfiy. -33 dan 17 ni ayirish.
x=5
-50 ni -10 ga bo'lish.
x=\frac{8}{5} x=5
Tenglama yechildi.
4x-16+4x-4=5\left(x-4\right)\left(x-1\right)
x qiymati 1,4 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 4\left(x-4\right)\left(x-1\right) ga, x-1,x-4,4 ning eng kichik karralisiga ko‘paytiring.
8x-16-4=5\left(x-4\right)\left(x-1\right)
8x ni olish uchun 4x va 4x ni birlashtirish.
8x-20=5\left(x-4\right)\left(x-1\right)
-20 olish uchun -16 dan 4 ni ayirish.
8x-20=\left(5x-20\right)\left(x-1\right)
5 ga x-4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
8x-20=5x^{2}-25x+20
5x-20 ga x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
8x-20-5x^{2}=-25x+20
Ikkala tarafdan 5x^{2} ni ayirish.
8x-20-5x^{2}+25x=20
25x ni ikki tarafga qo’shing.
33x-20-5x^{2}=20
33x ni olish uchun 8x va 25x ni birlashtirish.
33x-5x^{2}=20+20
20 ni ikki tarafga qo’shing.
33x-5x^{2}=40
40 olish uchun 20 va 20'ni qo'shing.
-5x^{2}+33x=40
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-5x^{2}+33x}{-5}=\frac{40}{-5}
Ikki tarafini -5 ga bo‘ling.
x^{2}+\frac{33}{-5}x=\frac{40}{-5}
-5 ga bo'lish -5 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{33}{5}x=\frac{40}{-5}
33 ni -5 ga bo'lish.
x^{2}-\frac{33}{5}x=-8
40 ni -5 ga bo'lish.
x^{2}-\frac{33}{5}x+\left(-\frac{33}{10}\right)^{2}=-8+\left(-\frac{33}{10}\right)^{2}
-\frac{33}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{33}{10} olish uchun. Keyin, -\frac{33}{10} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{33}{5}x+\frac{1089}{100}=-8+\frac{1089}{100}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{33}{10} kvadratini chiqarish.
x^{2}-\frac{33}{5}x+\frac{1089}{100}=\frac{289}{100}
-8 ni \frac{1089}{100} ga qo'shish.
\left(x-\frac{33}{10}\right)^{2}=\frac{289}{100}
x^{2}-\frac{33}{5}x+\frac{1089}{100} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{33}{10}\right)^{2}}=\sqrt{\frac{289}{100}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{33}{10}=\frac{17}{10} x-\frac{33}{10}=-\frac{17}{10}
Qisqartirish.
x=5 x=\frac{8}{5}
\frac{33}{10} ni tenglamaning ikkala tarafiga qo'shish.