Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x+1+x\times 4+x\left(x+1\right)=\left(x+1\right)\times 15
x qiymati -1,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x\left(x+1\right) ga, x,x+1 ning eng kichik karralisiga ko‘paytiring.
5x+1+x\left(x+1\right)=\left(x+1\right)\times 15
5x ni olish uchun x va x\times 4 ni birlashtirish.
5x+1+x^{2}+x=\left(x+1\right)\times 15
x ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
6x+1+x^{2}=\left(x+1\right)\times 15
6x ni olish uchun 5x va x ni birlashtirish.
6x+1+x^{2}=15x+15
x+1 ga 15 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
6x+1+x^{2}-15x=15
Ikkala tarafdan 15x ni ayirish.
-9x+1+x^{2}=15
-9x ni olish uchun 6x va -15x ni birlashtirish.
-9x+1+x^{2}-15=0
Ikkala tarafdan 15 ni ayirish.
-9x-14+x^{2}=0
-14 olish uchun 1 dan 15 ni ayirish.
x^{2}-9x-14=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\left(-14\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -9 ni b va -14 ni c bilan almashtiring.
x=\frac{-\left(-9\right)±\sqrt{81-4\left(-14\right)}}{2}
-9 kvadratini chiqarish.
x=\frac{-\left(-9\right)±\sqrt{81+56}}{2}
-4 ni -14 marotabaga ko'paytirish.
x=\frac{-\left(-9\right)±\sqrt{137}}{2}
81 ni 56 ga qo'shish.
x=\frac{9±\sqrt{137}}{2}
-9 ning teskarisi 9 ga teng.
x=\frac{\sqrt{137}+9}{2}
x=\frac{9±\sqrt{137}}{2} tenglamasini yeching, bunda ± musbat. 9 ni \sqrt{137} ga qo'shish.
x=\frac{9-\sqrt{137}}{2}
x=\frac{9±\sqrt{137}}{2} tenglamasini yeching, bunda ± manfiy. 9 dan \sqrt{137} ni ayirish.
x=\frac{\sqrt{137}+9}{2} x=\frac{9-\sqrt{137}}{2}
Tenglama yechildi.
x+1+x\times 4+x\left(x+1\right)=\left(x+1\right)\times 15
x qiymati -1,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x\left(x+1\right) ga, x,x+1 ning eng kichik karralisiga ko‘paytiring.
5x+1+x\left(x+1\right)=\left(x+1\right)\times 15
5x ni olish uchun x va x\times 4 ni birlashtirish.
5x+1+x^{2}+x=\left(x+1\right)\times 15
x ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
6x+1+x^{2}=\left(x+1\right)\times 15
6x ni olish uchun 5x va x ni birlashtirish.
6x+1+x^{2}=15x+15
x+1 ga 15 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
6x+1+x^{2}-15x=15
Ikkala tarafdan 15x ni ayirish.
-9x+1+x^{2}=15
-9x ni olish uchun 6x va -15x ni birlashtirish.
-9x+x^{2}=15-1
Ikkala tarafdan 1 ni ayirish.
-9x+x^{2}=14
14 olish uchun 15 dan 1 ni ayirish.
x^{2}-9x=14
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=14+\left(-\frac{9}{2}\right)^{2}
-9 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{9}{2} olish uchun. Keyin, -\frac{9}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-9x+\frac{81}{4}=14+\frac{81}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{9}{2} kvadratini chiqarish.
x^{2}-9x+\frac{81}{4}=\frac{137}{4}
14 ni \frac{81}{4} ga qo'shish.
\left(x-\frac{9}{2}\right)^{2}=\frac{137}{4}
x^{2}-9x+\frac{81}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{137}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{9}{2}=\frac{\sqrt{137}}{2} x-\frac{9}{2}=-\frac{\sqrt{137}}{2}
Qisqartirish.
x=\frac{\sqrt{137}+9}{2} x=\frac{9-\sqrt{137}}{2}
\frac{9}{2} ni tenglamaning ikkala tarafiga qo'shish.