x uchun yechish
x = \frac{\sqrt{1345} + 41}{4} \approx 19,41856041
x = \frac{41 - \sqrt{1345}}{4} \approx 1,08143959
Grafik
Baham ko'rish
Klipbordga nusxa olish
14x-42+7x\times 3=2x\left(x-3\right)
x qiymati 0,3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 14x\left(x-3\right) ga, x,2\left(x-3\right),7 ning eng kichik karralisiga ko‘paytiring.
14x-42+21x=2x\left(x-3\right)
21 hosil qilish uchun 7 va 3 ni ko'paytirish.
35x-42=2x\left(x-3\right)
35x ni olish uchun 14x va 21x ni birlashtirish.
35x-42=2x^{2}-6x
2x ga x-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
35x-42-2x^{2}=-6x
Ikkala tarafdan 2x^{2} ni ayirish.
35x-42-2x^{2}+6x=0
6x ni ikki tarafga qo’shing.
41x-42-2x^{2}=0
41x ni olish uchun 35x va 6x ni birlashtirish.
-2x^{2}+41x-42=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-41±\sqrt{41^{2}-4\left(-2\right)\left(-42\right)}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, 41 ni b va -42 ni c bilan almashtiring.
x=\frac{-41±\sqrt{1681-4\left(-2\right)\left(-42\right)}}{2\left(-2\right)}
41 kvadratini chiqarish.
x=\frac{-41±\sqrt{1681+8\left(-42\right)}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{-41±\sqrt{1681-336}}{2\left(-2\right)}
8 ni -42 marotabaga ko'paytirish.
x=\frac{-41±\sqrt{1345}}{2\left(-2\right)}
1681 ni -336 ga qo'shish.
x=\frac{-41±\sqrt{1345}}{-4}
2 ni -2 marotabaga ko'paytirish.
x=\frac{\sqrt{1345}-41}{-4}
x=\frac{-41±\sqrt{1345}}{-4} tenglamasini yeching, bunda ± musbat. -41 ni \sqrt{1345} ga qo'shish.
x=\frac{41-\sqrt{1345}}{4}
-41+\sqrt{1345} ni -4 ga bo'lish.
x=\frac{-\sqrt{1345}-41}{-4}
x=\frac{-41±\sqrt{1345}}{-4} tenglamasini yeching, bunda ± manfiy. -41 dan \sqrt{1345} ni ayirish.
x=\frac{\sqrt{1345}+41}{4}
-41-\sqrt{1345} ni -4 ga bo'lish.
x=\frac{41-\sqrt{1345}}{4} x=\frac{\sqrt{1345}+41}{4}
Tenglama yechildi.
14x-42+7x\times 3=2x\left(x-3\right)
x qiymati 0,3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 14x\left(x-3\right) ga, x,2\left(x-3\right),7 ning eng kichik karralisiga ko‘paytiring.
14x-42+21x=2x\left(x-3\right)
21 hosil qilish uchun 7 va 3 ni ko'paytirish.
35x-42=2x\left(x-3\right)
35x ni olish uchun 14x va 21x ni birlashtirish.
35x-42=2x^{2}-6x
2x ga x-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
35x-42-2x^{2}=-6x
Ikkala tarafdan 2x^{2} ni ayirish.
35x-42-2x^{2}+6x=0
6x ni ikki tarafga qo’shing.
41x-42-2x^{2}=0
41x ni olish uchun 35x va 6x ni birlashtirish.
41x-2x^{2}=42
42 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
-2x^{2}+41x=42
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-2x^{2}+41x}{-2}=\frac{42}{-2}
Ikki tarafini -2 ga bo‘ling.
x^{2}+\frac{41}{-2}x=\frac{42}{-2}
-2 ga bo'lish -2 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{41}{2}x=\frac{42}{-2}
41 ni -2 ga bo'lish.
x^{2}-\frac{41}{2}x=-21
42 ni -2 ga bo'lish.
x^{2}-\frac{41}{2}x+\left(-\frac{41}{4}\right)^{2}=-21+\left(-\frac{41}{4}\right)^{2}
-\frac{41}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{41}{4} olish uchun. Keyin, -\frac{41}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{41}{2}x+\frac{1681}{16}=-21+\frac{1681}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{41}{4} kvadratini chiqarish.
x^{2}-\frac{41}{2}x+\frac{1681}{16}=\frac{1345}{16}
-21 ni \frac{1681}{16} ga qo'shish.
\left(x-\frac{41}{4}\right)^{2}=\frac{1345}{16}
x^{2}-\frac{41}{2}x+\frac{1681}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{41}{4}\right)^{2}}=\sqrt{\frac{1345}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{41}{4}=\frac{\sqrt{1345}}{4} x-\frac{41}{4}=-\frac{\sqrt{1345}}{4}
Qisqartirish.
x=\frac{\sqrt{1345}+41}{4} x=\frac{41-\sqrt{1345}}{4}
\frac{41}{4} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}