Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

1+\left(1+x\right)\left(2+x\right)=\left(x-1\right)\left(x+2\right)\times 3
x qiymati -2,-1,1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-1\right)\left(x+1\right)\left(x+2\right) ga, x^{3}+2x^{2}-x-2,1-x,x+1 ning eng kichik karralisiga ko‘paytiring.
1+2+3x+x^{2}=\left(x-1\right)\left(x+2\right)\times 3
1+x ga 2+x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3+3x+x^{2}=\left(x-1\right)\left(x+2\right)\times 3
3 olish uchun 1 va 2'ni qo'shing.
3+3x+x^{2}=\left(x^{2}+x-2\right)\times 3
x-1 ga x+2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3+3x+x^{2}=3x^{2}+3x-6
x^{2}+x-2 ga 3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3+3x+x^{2}-3x^{2}=3x-6
Ikkala tarafdan 3x^{2} ni ayirish.
3+3x-2x^{2}=3x-6
-2x^{2} ni olish uchun x^{2} va -3x^{2} ni birlashtirish.
3+3x-2x^{2}-3x=-6
Ikkala tarafdan 3x ni ayirish.
3-2x^{2}=-6
0 ni olish uchun 3x va -3x ni birlashtirish.
-2x^{2}=-6-3
Ikkala tarafdan 3 ni ayirish.
-2x^{2}=-9
-9 olish uchun -6 dan 3 ni ayirish.
x^{2}=\frac{-9}{-2}
Ikki tarafini -2 ga bo‘ling.
x^{2}=\frac{9}{2}
Ikkala surat va maxrajdan manfiy belgini olib tashlash bilan \frac{-9}{-2} kasrini \frac{9}{2} ga soddalashtirish mumkin.
x=\frac{3\sqrt{2}}{2} x=-\frac{3\sqrt{2}}{2}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
1+\left(1+x\right)\left(2+x\right)=\left(x-1\right)\left(x+2\right)\times 3
x qiymati -2,-1,1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-1\right)\left(x+1\right)\left(x+2\right) ga, x^{3}+2x^{2}-x-2,1-x,x+1 ning eng kichik karralisiga ko‘paytiring.
1+2+3x+x^{2}=\left(x-1\right)\left(x+2\right)\times 3
1+x ga 2+x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3+3x+x^{2}=\left(x-1\right)\left(x+2\right)\times 3
3 olish uchun 1 va 2'ni qo'shing.
3+3x+x^{2}=\left(x^{2}+x-2\right)\times 3
x-1 ga x+2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3+3x+x^{2}=3x^{2}+3x-6
x^{2}+x-2 ga 3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3+3x+x^{2}-3x^{2}=3x-6
Ikkala tarafdan 3x^{2} ni ayirish.
3+3x-2x^{2}=3x-6
-2x^{2} ni olish uchun x^{2} va -3x^{2} ni birlashtirish.
3+3x-2x^{2}-3x=-6
Ikkala tarafdan 3x ni ayirish.
3-2x^{2}=-6
0 ni olish uchun 3x va -3x ni birlashtirish.
3-2x^{2}+6=0
6 ni ikki tarafga qo’shing.
9-2x^{2}=0
9 olish uchun 3 va 6'ni qo'shing.
-2x^{2}+9=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-2\right)\times 9}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, 0 ni b va 9 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\left(-2\right)\times 9}}{2\left(-2\right)}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{8\times 9}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{0±\sqrt{72}}{2\left(-2\right)}
8 ni 9 marotabaga ko'paytirish.
x=\frac{0±6\sqrt{2}}{2\left(-2\right)}
72 ning kvadrat ildizini chiqarish.
x=\frac{0±6\sqrt{2}}{-4}
2 ni -2 marotabaga ko'paytirish.
x=-\frac{3\sqrt{2}}{2}
x=\frac{0±6\sqrt{2}}{-4} tenglamasini yeching, bunda ± musbat.
x=\frac{3\sqrt{2}}{2}
x=\frac{0±6\sqrt{2}}{-4} tenglamasini yeching, bunda ± manfiy.
x=-\frac{3\sqrt{2}}{2} x=\frac{3\sqrt{2}}{2}
Tenglama yechildi.