x uchun yechish
x=-1
Grafik
Baham ko'rish
Klipbordga nusxa olish
21\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+8\right)+21\left(x+2\right)\left(x-1\right)=7\left(x+2\right)\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
x qiymati -8,-5,-2,1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right) ga, x^{2}+x-2,x^{2}+7x+10,x^{2}+13x+40,3x-3,21 ning eng kichik karralisiga ko‘paytiring.
\left(21x+105\right)\left(x+8\right)+21\left(x-1\right)\left(x+8\right)+21\left(x+2\right)\left(x-1\right)=7\left(x+2\right)\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
21 ga x+5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
21x^{2}+273x+840+21\left(x-1\right)\left(x+8\right)+21\left(x+2\right)\left(x-1\right)=7\left(x+2\right)\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
21x+105 ga x+8 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
21x^{2}+273x+840+\left(21x-21\right)\left(x+8\right)+21\left(x+2\right)\left(x-1\right)=7\left(x+2\right)\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
21 ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
21x^{2}+273x+840+21x^{2}+147x-168+21\left(x+2\right)\left(x-1\right)=7\left(x+2\right)\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
21x-21 ga x+8 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
42x^{2}+273x+840+147x-168+21\left(x+2\right)\left(x-1\right)=7\left(x+2\right)\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
42x^{2} ni olish uchun 21x^{2} va 21x^{2} ni birlashtirish.
42x^{2}+420x+840-168+21\left(x+2\right)\left(x-1\right)=7\left(x+2\right)\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
420x ni olish uchun 273x va 147x ni birlashtirish.
42x^{2}+420x+672+21\left(x+2\right)\left(x-1\right)=7\left(x+2\right)\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
672 olish uchun 840 dan 168 ni ayirish.
42x^{2}+420x+672+\left(21x+42\right)\left(x-1\right)=7\left(x+2\right)\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
21 ga x+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
42x^{2}+420x+672+21x^{2}+21x-42=7\left(x+2\right)\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
21x+42 ga x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
63x^{2}+420x+672+21x-42=7\left(x+2\right)\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
63x^{2} ni olish uchun 42x^{2} va 21x^{2} ni birlashtirish.
63x^{2}+441x+672-42=7\left(x+2\right)\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
441x ni olish uchun 420x va 21x ni birlashtirish.
63x^{2}+441x+630=7\left(x+2\right)\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
630 olish uchun 672 dan 42 ni ayirish.
63x^{2}+441x+630=\left(7x+14\right)\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
7 ga x+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
63x^{2}+441x+630=\left(7x^{2}+49x+70\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
7x+14 ga x+5 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
63x^{2}+441x+630=7x^{3}+105x^{2}+462x+560+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
7x^{2}+49x+70 ga x+8 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
63x^{2}+441x+630=7x^{3}+105x^{2}+462x+560-\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)
-1 hosil qilish uchun 21 va -\frac{1}{21} ni ko'paytirish.
63x^{2}+441x+630=7x^{3}+105x^{2}+462x+560+\left(-x+1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)
-1 ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
63x^{2}+441x+630=7x^{3}+105x^{2}+462x+560+\left(-x^{2}-x+2\right)\left(x+5\right)\left(x+8\right)
-x+1 ga x+2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
63x^{2}+441x+630=7x^{3}+105x^{2}+462x+560+\left(-x^{3}-6x^{2}-3x+10\right)\left(x+8\right)
-x^{2}-x+2 ga x+5 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
63x^{2}+441x+630=7x^{3}+105x^{2}+462x+560-x^{4}-14x^{3}-51x^{2}-14x+80
-x^{3}-6x^{2}-3x+10 ga x+8 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
63x^{2}+441x+630=-7x^{3}+105x^{2}+462x+560-x^{4}-51x^{2}-14x+80
-7x^{3} ni olish uchun 7x^{3} va -14x^{3} ni birlashtirish.
63x^{2}+441x+630=-7x^{3}+54x^{2}+462x+560-x^{4}-14x+80
54x^{2} ni olish uchun 105x^{2} va -51x^{2} ni birlashtirish.
63x^{2}+441x+630=-7x^{3}+54x^{2}+448x+560-x^{4}+80
448x ni olish uchun 462x va -14x ni birlashtirish.
63x^{2}+441x+630=-7x^{3}+54x^{2}+448x+640-x^{4}
640 olish uchun 560 va 80'ni qo'shing.
63x^{2}+441x+630+7x^{3}=54x^{2}+448x+640-x^{4}
7x^{3} ni ikki tarafga qo’shing.
63x^{2}+441x+630+7x^{3}-54x^{2}=448x+640-x^{4}
Ikkala tarafdan 54x^{2} ni ayirish.
9x^{2}+441x+630+7x^{3}=448x+640-x^{4}
9x^{2} ni olish uchun 63x^{2} va -54x^{2} ni birlashtirish.
9x^{2}+441x+630+7x^{3}-448x=640-x^{4}
Ikkala tarafdan 448x ni ayirish.
9x^{2}-7x+630+7x^{3}=640-x^{4}
-7x ni olish uchun 441x va -448x ni birlashtirish.
9x^{2}-7x+630+7x^{3}-640=-x^{4}
Ikkala tarafdan 640 ni ayirish.
9x^{2}-7x-10+7x^{3}=-x^{4}
-10 olish uchun 630 dan 640 ni ayirish.
9x^{2}-7x-10+7x^{3}+x^{4}=0
x^{4} ni ikki tarafga qo’shing.
x^{4}+7x^{3}+9x^{2}-7x-10=0
Tenglamani standart shaklga keltirish uchun uni qayta tartiblash. Shartlarni eng yuqoridan eng pastki qiymat ko'rsatgichiga joylashtirish.
±10,±5,±2,±1
Ratsional ildiz teoremasiga koʻra, koʻphadlarning barcha ratsional ildizlari \frac{p}{q} shakli ichida, bu yerda p konstant shart -10 bilan boʻlinadi va q yetakchi koeffisientni 1 boʻladi. Barcha nomzodlarni oching \frac{p}{q}.
x=1
Eng kichigidan boshlab, mutlaq qiymatgacha butun son qiymatlarni sinab koʻrish orqali ana shunday bitta ildizni toping. Agar butun sonlar ildizlari topilmasa, kasrlarni sinab koʻring.
x^{3}+8x^{2}+17x+10=0
Faktor teoremasiga koʻra, x-k har bir k ildizining faktoridir. x^{3}+8x^{2}+17x+10 ni olish uchun x^{4}+7x^{3}+9x^{2}-7x-10 ni x-1 ga bo‘ling. Natija 0 ga teng boʻlgandagi tenglamani yeching.
±10,±5,±2,±1
Ratsional ildiz teoremasiga koʻra, koʻphadlarning barcha ratsional ildizlari \frac{p}{q} shakli ichida, bu yerda p konstant shart 10 bilan boʻlinadi va q yetakchi koeffisientni 1 boʻladi. Barcha nomzodlarni oching \frac{p}{q}.
x=-1
Eng kichigidan boshlab, mutlaq qiymatgacha butun son qiymatlarni sinab koʻrish orqali ana shunday bitta ildizni toping. Agar butun sonlar ildizlari topilmasa, kasrlarni sinab koʻring.
x^{2}+7x+10=0
Faktor teoremasiga koʻra, x-k har bir k ildizining faktoridir. x^{2}+7x+10 ni olish uchun x^{3}+8x^{2}+17x+10 ni x+1 ga bo‘ling. Natija 0 ga teng boʻlgandagi tenglamani yeching.
x=\frac{-7±\sqrt{7^{2}-4\times 1\times 10}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni bu formula bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat tenglamada a uchun 1 ni, b uchun 7 ni va c uchun 10 ni ayiring.
x=\frac{-7±3}{2}
Hisoblarni amalga oshiring.
x=-5 x=-2
x^{2}+7x+10=0 tenglamasini ± plus va ± minus boʻlgan holatida ishlang.
x=-1
Oʻzgaruvchi teng boʻlmagan qiymatlarni olib tashlang.
x=1 x=-1 x=-5 x=-2
Barcha topilgan yechimlar roʻyxati.
x=-1
x qiymati 1,-5,-2 qiymatlaridan birortasiga teng bo‘lmaydi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}