Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x-2+x+3=7x-\left(x-2\right)x
x qiymati -1,2 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-2\right)\left(x+1\right) ga, x+1,\left(x-2\right)\left(x+1\right) ning eng kichik karralisiga ko‘paytiring.
2x-2+3=7x-\left(x-2\right)x
2x ni olish uchun x va x ni birlashtirish.
2x+1=7x-\left(x-2\right)x
1 olish uchun -2 va 3'ni qo'shing.
2x+1=7x-\left(x^{2}-2x\right)
x-2 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x+1=7x-x^{2}+2x
x^{2}-2x teskarisini topish uchun har birining teskarisini toping.
2x+1=9x-x^{2}
9x ni olish uchun 7x va 2x ni birlashtirish.
2x+1-9x=-x^{2}
Ikkala tarafdan 9x ni ayirish.
-7x+1=-x^{2}
-7x ni olish uchun 2x va -9x ni birlashtirish.
-7x+1+x^{2}=0
x^{2} ni ikki tarafga qo’shing.
x^{2}-7x+1=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -7 ni b va 1 ni c bilan almashtiring.
x=\frac{-\left(-7\right)±\sqrt{49-4}}{2}
-7 kvadratini chiqarish.
x=\frac{-\left(-7\right)±\sqrt{45}}{2}
49 ni -4 ga qo'shish.
x=\frac{-\left(-7\right)±3\sqrt{5}}{2}
45 ning kvadrat ildizini chiqarish.
x=\frac{7±3\sqrt{5}}{2}
-7 ning teskarisi 7 ga teng.
x=\frac{3\sqrt{5}+7}{2}
x=\frac{7±3\sqrt{5}}{2} tenglamasini yeching, bunda ± musbat. 7 ni 3\sqrt{5} ga qo'shish.
x=\frac{7-3\sqrt{5}}{2}
x=\frac{7±3\sqrt{5}}{2} tenglamasini yeching, bunda ± manfiy. 7 dan 3\sqrt{5} ni ayirish.
x=\frac{3\sqrt{5}+7}{2} x=\frac{7-3\sqrt{5}}{2}
Tenglama yechildi.
x-2+x+3=7x-\left(x-2\right)x
x qiymati -1,2 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-2\right)\left(x+1\right) ga, x+1,\left(x-2\right)\left(x+1\right) ning eng kichik karralisiga ko‘paytiring.
2x-2+3=7x-\left(x-2\right)x
2x ni olish uchun x va x ni birlashtirish.
2x+1=7x-\left(x-2\right)x
1 olish uchun -2 va 3'ni qo'shing.
2x+1=7x-\left(x^{2}-2x\right)
x-2 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x+1=7x-x^{2}+2x
x^{2}-2x teskarisini topish uchun har birining teskarisini toping.
2x+1=9x-x^{2}
9x ni olish uchun 7x va 2x ni birlashtirish.
2x+1-9x=-x^{2}
Ikkala tarafdan 9x ni ayirish.
-7x+1=-x^{2}
-7x ni olish uchun 2x va -9x ni birlashtirish.
-7x+1+x^{2}=0
x^{2} ni ikki tarafga qo’shing.
-7x+x^{2}=-1
Ikkala tarafdan 1 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
x^{2}-7x=-1
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-1+\left(-\frac{7}{2}\right)^{2}
-7 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{7}{2} olish uchun. Keyin, -\frac{7}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-7x+\frac{49}{4}=-1+\frac{49}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{7}{2} kvadratini chiqarish.
x^{2}-7x+\frac{49}{4}=\frac{45}{4}
-1 ni \frac{49}{4} ga qo'shish.
\left(x-\frac{7}{2}\right)^{2}=\frac{45}{4}
x^{2}-7x+\frac{49}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{45}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{7}{2}=\frac{3\sqrt{5}}{2} x-\frac{7}{2}=-\frac{3\sqrt{5}}{2}
Qisqartirish.
x=\frac{3\sqrt{5}+7}{2} x=\frac{7-3\sqrt{5}}{2}
\frac{7}{2} ni tenglamaning ikkala tarafiga qo'shish.