Baholash
\frac{1}{n\left(n+1\right)}
n ga nisbatan hosilani topish
-\frac{2n+1}{\left(n\left(n+1\right)\right)^{2}}
Baham ko'rish
Klipbordga nusxa olish
\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. n va n+1 ning eng kichik umumiy karralisi n\left(n+1\right). \frac{1}{n} ni \frac{n+1}{n+1} marotabaga ko'paytirish. \frac{1}{n+1} ni \frac{n}{n} marotabaga ko'paytirish.
\frac{n+1-n}{n\left(n+1\right)}
\frac{n+1}{n\left(n+1\right)} va \frac{n}{n\left(n+1\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{1}{n\left(n+1\right)}
n+1-n kabi iboralarga o‘xshab birlashtiring.
\frac{1}{n^{2}+n}
n\left(n+1\right) ni kengaytirish.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)})
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. n va n+1 ning eng kichik umumiy karralisi n\left(n+1\right). \frac{1}{n} ni \frac{n+1}{n+1} marotabaga ko'paytirish. \frac{1}{n+1} ni \frac{n}{n} marotabaga ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{n+1-n}{n\left(n+1\right)})
\frac{n+1}{n\left(n+1\right)} va \frac{n}{n\left(n+1\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{1}{n\left(n+1\right)})
n+1-n kabi iboralarga o‘xshab birlashtiring.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{1}{n^{2}+n})
n ga n+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-\left(n^{2}+n^{1}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}n}(n^{2}+n^{1})
Agar F ikki differensial funksiya f\left(u\right) va u=g\left(x\right)'ning yig'indisi bo'lsa, ya'ni agar F\left(x\right)=f\left(g\left(x\right)\right) bo'lsa, F hosilasi f'ning u martalik hosilasi, g'ning x martalik hosilasi ya'ni \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right) bo'ladi.
-\left(n^{2}+n^{1}\right)^{-2}\left(2n^{2-1}+n^{1-1}\right)
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
\left(n^{2}+n^{1}\right)^{-2}\left(-2n^{1}-n^{0}\right)
Qisqartirish.
\left(n^{2}+n\right)^{-2}\left(-2n-n^{0}\right)
Har qanday t sharti uchun t^{1}=t.
\left(n^{2}+n\right)^{-2}\left(-2n-1\right)
Har qanday t sharti uchun (0 bundan mustasno) t^{0}=1.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}