b_5 uchun yechish
b_{5}=16a^{2}+\frac{4}{a^{2}}
a\neq 0
a uchun yechish (complex solution)
a=\frac{\sqrt{2\left(\sqrt{b_{5}^{2}-256}+b_{5}\right)}}{8}
a=-\frac{\sqrt{2\left(\sqrt{b_{5}^{2}-256}+b_{5}\right)}}{8}
a=-\frac{\sqrt{2\left(-\sqrt{b_{5}^{2}-256}+b_{5}\right)}}{8}
a=\frac{\sqrt{2\left(-\sqrt{b_{5}^{2}-256}+b_{5}\right)}}{8}
a uchun yechish
a=-\frac{\sqrt{2\left(-\sqrt{b_{5}^{2}-256}+b_{5}\right)}}{8}
a=\frac{\sqrt{2\left(-\sqrt{b_{5}^{2}-256}+b_{5}\right)}}{8}
a=\frac{\sqrt{2\left(\sqrt{b_{5}^{2}-256}+b_{5}\right)}}{8}
a=-\frac{\sqrt{2\left(\sqrt{b_{5}^{2}-256}+b_{5}\right)}}{8}\text{, }b_{5}\geq 16
Viktorina
Algebra
5xshash muammolar:
\frac { 1 } { a ^ { 4 } } - 4 ( \frac { b 5 } { 16 a ^ { 2 } } - 1 ) = 0
Baham ko'rish
Klipbordga nusxa olish
16-4\left(\frac{b_{5}}{16a^{2}}-1\right)\times 16a^{4}=0
Tenglamaning ikkala tarafini 16a^{4} ga, a^{4},16a^{2} ning eng kichik karralisiga ko‘paytiring.
16-4\left(\frac{b_{5}}{16a^{2}}-\frac{16a^{2}}{16a^{2}}\right)\times 16a^{4}=0
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 1 ni \frac{16a^{2}}{16a^{2}} marotabaga ko'paytirish.
16-4\times \frac{b_{5}-16a^{2}}{16a^{2}}\times 16a^{4}=0
\frac{b_{5}}{16a^{2}} va \frac{16a^{2}}{16a^{2}} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
16-64\times \frac{b_{5}-16a^{2}}{16a^{2}}a^{4}=0
64 hosil qilish uchun 4 va 16 ni ko'paytirish.
16-\frac{64\left(b_{5}-16a^{2}\right)}{16a^{2}}a^{4}=0
64\times \frac{b_{5}-16a^{2}}{16a^{2}} ni yagona kasrga aylantiring.
16-\frac{4\left(-16a^{2}+b_{5}\right)}{a^{2}}a^{4}=0
Surat va maxrajdagi ikkala 16 ni qisqartiring.
16-\frac{4\left(-16a^{2}+b_{5}\right)a^{4}}{a^{2}}=0
\frac{4\left(-16a^{2}+b_{5}\right)}{a^{2}}a^{4} ni yagona kasrga aylantiring.
16-4a^{2}\left(-16a^{2}+b_{5}\right)=0
Surat va maxrajdagi ikkala a^{2} ni qisqartiring.
16+64a^{4}-4a^{2}b_{5}=0
-4a^{2} ga -16a^{2}+b_{5} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
64a^{4}-4a^{2}b_{5}=-16
Ikkala tarafdan 16 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
-4a^{2}b_{5}=-16-64a^{4}
Ikkala tarafdan 64a^{4} ni ayirish.
\left(-4a^{2}\right)b_{5}=-64a^{4}-16
Tenglama standart shaklda.
\frac{\left(-4a^{2}\right)b_{5}}{-4a^{2}}=\frac{-64a^{4}-16}{-4a^{2}}
Ikki tarafini -4a^{2} ga bo‘ling.
b_{5}=\frac{-64a^{4}-16}{-4a^{2}}
-4a^{2} ga bo'lish -4a^{2} ga ko'paytirishni bekor qiladi.
b_{5}=16a^{2}+\frac{4}{a^{2}}
-16-64a^{4} ni -4a^{2} ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}