a uchun yechish (complex solution)
a=\frac{1}{-4x-1}
x\neq 0\text{ and }x\neq -\frac{1}{4}\text{ and }x\neq -\frac{1}{2}
x uchun yechish (complex solution)
x=-\frac{1}{4}-\frac{1}{4a}
a\neq 0\text{ and }a\neq -1\text{ and }a\neq 1
a uchun yechish
a=\frac{1}{-4x-1}
x\neq -\frac{1}{2}\text{ and }x\neq -\frac{1}{4}\text{ and }x\neq 0
x uchun yechish
x=-\frac{1}{4}-\frac{1}{4a}
a\neq 0\text{ and }|a|\neq 1
Baham ko'rish
Klipbordga nusxa olish
1-\left(a+1\right)\left(2x+1\right)=\left(a-1\right)\left(2x-1\right)+a
a qiymati -1,1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(a-1\right)\left(a+1\right) ga, a^{2}-1,a-1,a+1 ning eng kichik karralisiga ko‘paytiring.
1-\left(2ax+a+2x+1\right)=\left(a-1\right)\left(2x-1\right)+a
a+1 ga 2x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
1-2ax-a-2x-1=\left(a-1\right)\left(2x-1\right)+a
2ax+a+2x+1 teskarisini topish uchun har birining teskarisini toping.
-2ax-a-2x=\left(a-1\right)\left(2x-1\right)+a
0 olish uchun 1 dan 1 ni ayirish.
-2ax-a-2x=2ax-a-2x+1+a
a-1 ga 2x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-2ax-a-2x=2ax-2x+1
0 ni olish uchun -a va a ni birlashtirish.
-2ax-a-2x-2ax=-2x+1
Ikkala tarafdan 2ax ni ayirish.
-4ax-a-2x=-2x+1
-4ax ni olish uchun -2ax va -2ax ni birlashtirish.
-4ax-a=-2x+1+2x
2x ni ikki tarafga qo’shing.
-4ax-a=1
0 ni olish uchun -2x va 2x ni birlashtirish.
\left(-4x-1\right)a=1
a'ga ega bo'lgan barcha shartlarni birlashtirish.
\frac{\left(-4x-1\right)a}{-4x-1}=\frac{1}{-4x-1}
Ikki tarafini -4x-1 ga bo‘ling.
a=\frac{1}{-4x-1}
-4x-1 ga bo'lish -4x-1 ga ko'paytirishni bekor qiladi.
a=\frac{1}{-4x-1}\text{, }a\neq -1\text{ and }a\neq 1
a qiymati -1,1 qiymatlaridan birortasiga teng bo‘lmaydi.
1-\left(a+1\right)\left(2x+1\right)=\left(a-1\right)\left(2x-1\right)+a
Tenglamaning ikkala tarafini \left(a-1\right)\left(a+1\right) ga, a^{2}-1,a-1,a+1 ning eng kichik karralisiga ko‘paytiring.
1-\left(2ax+a+2x+1\right)=\left(a-1\right)\left(2x-1\right)+a
a+1 ga 2x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
1-2ax-a-2x-1=\left(a-1\right)\left(2x-1\right)+a
2ax+a+2x+1 teskarisini topish uchun har birining teskarisini toping.
-2ax-a-2x=\left(a-1\right)\left(2x-1\right)+a
0 olish uchun 1 dan 1 ni ayirish.
-2ax-a-2x=2ax-a-2x+1+a
a-1 ga 2x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-2ax-a-2x=2ax-2x+1
0 ni olish uchun -a va a ni birlashtirish.
-2ax-a-2x-2ax=-2x+1
Ikkala tarafdan 2ax ni ayirish.
-4ax-a-2x=-2x+1
-4ax ni olish uchun -2ax va -2ax ni birlashtirish.
-4ax-a-2x+2x=1
2x ni ikki tarafga qo’shing.
-4ax-a=1
0 ni olish uchun -2x va 2x ni birlashtirish.
-4ax=1+a
a ni ikki tarafga qo’shing.
\left(-4a\right)x=a+1
Tenglama standart shaklda.
\frac{\left(-4a\right)x}{-4a}=\frac{a+1}{-4a}
Ikki tarafini -4a ga bo‘ling.
x=\frac{a+1}{-4a}
-4a ga bo'lish -4a ga ko'paytirishni bekor qiladi.
x=-\frac{1}{4}-\frac{1}{4a}
a+1 ni -4a ga bo'lish.
1-\left(a+1\right)\left(2x+1\right)=\left(a-1\right)\left(2x-1\right)+a
a qiymati -1,1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(a-1\right)\left(a+1\right) ga, a^{2}-1,a-1,a+1 ning eng kichik karralisiga ko‘paytiring.
1-\left(2ax+a+2x+1\right)=\left(a-1\right)\left(2x-1\right)+a
a+1 ga 2x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
1-2ax-a-2x-1=\left(a-1\right)\left(2x-1\right)+a
2ax+a+2x+1 teskarisini topish uchun har birining teskarisini toping.
-2ax-a-2x=\left(a-1\right)\left(2x-1\right)+a
0 olish uchun 1 dan 1 ni ayirish.
-2ax-a-2x=2ax-a-2x+1+a
a-1 ga 2x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-2ax-a-2x=2ax-2x+1
0 ni olish uchun -a va a ni birlashtirish.
-2ax-a-2x-2ax=-2x+1
Ikkala tarafdan 2ax ni ayirish.
-4ax-a-2x=-2x+1
-4ax ni olish uchun -2ax va -2ax ni birlashtirish.
-4ax-a=-2x+1+2x
2x ni ikki tarafga qo’shing.
-4ax-a=1
0 ni olish uchun -2x va 2x ni birlashtirish.
\left(-4x-1\right)a=1
a'ga ega bo'lgan barcha shartlarni birlashtirish.
\frac{\left(-4x-1\right)a}{-4x-1}=\frac{1}{-4x-1}
Ikki tarafini -4x-1 ga bo‘ling.
a=\frac{1}{-4x-1}
-4x-1 ga bo'lish -4x-1 ga ko'paytirishni bekor qiladi.
a=\frac{1}{-4x-1}\text{, }a\neq -1\text{ and }a\neq 1
a qiymati -1,1 qiymatlaridan birortasiga teng bo‘lmaydi.
1-\left(a+1\right)\left(2x+1\right)=\left(a-1\right)\left(2x-1\right)+a
Tenglamaning ikkala tarafini \left(a-1\right)\left(a+1\right) ga, a^{2}-1,a-1,a+1 ning eng kichik karralisiga ko‘paytiring.
1-\left(2ax+a+2x+1\right)=\left(a-1\right)\left(2x-1\right)+a
a+1 ga 2x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
1-2ax-a-2x-1=\left(a-1\right)\left(2x-1\right)+a
2ax+a+2x+1 teskarisini topish uchun har birining teskarisini toping.
-2ax-a-2x=\left(a-1\right)\left(2x-1\right)+a
0 olish uchun 1 dan 1 ni ayirish.
-2ax-a-2x=2ax-a-2x+1+a
a-1 ga 2x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-2ax-a-2x=2ax-2x+1
0 ni olish uchun -a va a ni birlashtirish.
-2ax-a-2x-2ax=-2x+1
Ikkala tarafdan 2ax ni ayirish.
-4ax-a-2x=-2x+1
-4ax ni olish uchun -2ax va -2ax ni birlashtirish.
-4ax-a-2x+2x=1
2x ni ikki tarafga qo’shing.
-4ax-a=1
0 ni olish uchun -2x va 2x ni birlashtirish.
-4ax=1+a
a ni ikki tarafga qo’shing.
\left(-4a\right)x=a+1
Tenglama standart shaklda.
\frac{\left(-4a\right)x}{-4a}=\frac{a+1}{-4a}
Ikki tarafini -4a ga bo‘ling.
x=\frac{a+1}{-4a}
-4a ga bo'lish -4a ga ko'paytirishni bekor qiladi.
x=-\frac{1}{4}-\frac{1}{4a}
a+1 ni -4a ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}