x uchun yechish
x=-\frac{2}{15}\approx -0,133333333
x=2
Grafik
Baham ko'rish
Klipbordga nusxa olish
5x+10+\left(3x-1\right)\times 16=5\left(x+2\right)\left(3x-1\right)
x qiymati -2,\frac{1}{3} qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 5\left(x+2\right)\left(3x-1\right)^{2} ga, 9x^{2}-6x+1,15x^{2}+25x-10,3x-1 ning eng kichik karralisiga ko‘paytiring.
5x+10+48x-16=5\left(x+2\right)\left(3x-1\right)
3x-1 ga 16 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
53x+10-16=5\left(x+2\right)\left(3x-1\right)
53x ni olish uchun 5x va 48x ni birlashtirish.
53x-6=5\left(x+2\right)\left(3x-1\right)
-6 olish uchun 10 dan 16 ni ayirish.
53x-6=\left(5x+10\right)\left(3x-1\right)
5 ga x+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
53x-6=15x^{2}+25x-10
5x+10 ga 3x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
53x-6-15x^{2}=25x-10
Ikkala tarafdan 15x^{2} ni ayirish.
53x-6-15x^{2}-25x=-10
Ikkala tarafdan 25x ni ayirish.
28x-6-15x^{2}=-10
28x ni olish uchun 53x va -25x ni birlashtirish.
28x-6-15x^{2}+10=0
10 ni ikki tarafga qo’shing.
28x+4-15x^{2}=0
4 olish uchun -6 va 10'ni qo'shing.
-15x^{2}+28x+4=0
Polinomni standart shaklga keltirish uchun uni qayta tartiblang. Shartlarni eng yuqoridan eng pastki qiymat ko'rsatgichiga joylashtirish.
a+b=28 ab=-15\times 4=-60
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon -15x^{2}+ax+bx+4 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,60 -2,30 -3,20 -4,15 -5,12 -6,10
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b musbat boʻlganda, musbat sonda manfiyga nisbatdan kattaroq mutlaq qiymat bor. -60-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1+60=59 -2+30=28 -3+20=17 -4+15=11 -5+12=7 -6+10=4
Har bir juftlik yigʻindisini hisoblang.
a=30 b=-2
Yechim – 28 yigʻindisini beruvchi juftlik.
\left(-15x^{2}+30x\right)+\left(-2x+4\right)
-15x^{2}+28x+4 ni \left(-15x^{2}+30x\right)+\left(-2x+4\right) sifatida qaytadan yozish.
15x\left(-x+2\right)+2\left(-x+2\right)
Birinchi guruhda 15x ni va ikkinchi guruhda 2 ni faktordan chiqaring.
\left(-x+2\right)\left(15x+2\right)
Distributiv funktsiyasidan foydalangan holda -x+2 umumiy terminini chiqaring.
x=2 x=-\frac{2}{15}
Tenglamani yechish uchun -x+2=0 va 15x+2=0 ni yeching.
5x+10+\left(3x-1\right)\times 16=5\left(x+2\right)\left(3x-1\right)
x qiymati -2,\frac{1}{3} qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 5\left(x+2\right)\left(3x-1\right)^{2} ga, 9x^{2}-6x+1,15x^{2}+25x-10,3x-1 ning eng kichik karralisiga ko‘paytiring.
5x+10+48x-16=5\left(x+2\right)\left(3x-1\right)
3x-1 ga 16 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
53x+10-16=5\left(x+2\right)\left(3x-1\right)
53x ni olish uchun 5x va 48x ni birlashtirish.
53x-6=5\left(x+2\right)\left(3x-1\right)
-6 olish uchun 10 dan 16 ni ayirish.
53x-6=\left(5x+10\right)\left(3x-1\right)
5 ga x+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
53x-6=15x^{2}+25x-10
5x+10 ga 3x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
53x-6-15x^{2}=25x-10
Ikkala tarafdan 15x^{2} ni ayirish.
53x-6-15x^{2}-25x=-10
Ikkala tarafdan 25x ni ayirish.
28x-6-15x^{2}=-10
28x ni olish uchun 53x va -25x ni birlashtirish.
28x-6-15x^{2}+10=0
10 ni ikki tarafga qo’shing.
28x+4-15x^{2}=0
4 olish uchun -6 va 10'ni qo'shing.
-15x^{2}+28x+4=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-28±\sqrt{28^{2}-4\left(-15\right)\times 4}}{2\left(-15\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -15 ni a, 28 ni b va 4 ni c bilan almashtiring.
x=\frac{-28±\sqrt{784-4\left(-15\right)\times 4}}{2\left(-15\right)}
28 kvadratini chiqarish.
x=\frac{-28±\sqrt{784+60\times 4}}{2\left(-15\right)}
-4 ni -15 marotabaga ko'paytirish.
x=\frac{-28±\sqrt{784+240}}{2\left(-15\right)}
60 ni 4 marotabaga ko'paytirish.
x=\frac{-28±\sqrt{1024}}{2\left(-15\right)}
784 ni 240 ga qo'shish.
x=\frac{-28±32}{2\left(-15\right)}
1024 ning kvadrat ildizini chiqarish.
x=\frac{-28±32}{-30}
2 ni -15 marotabaga ko'paytirish.
x=\frac{4}{-30}
x=\frac{-28±32}{-30} tenglamasini yeching, bunda ± musbat. -28 ni 32 ga qo'shish.
x=-\frac{2}{15}
\frac{4}{-30} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{60}{-30}
x=\frac{-28±32}{-30} tenglamasini yeching, bunda ± manfiy. -28 dan 32 ni ayirish.
x=2
-60 ni -30 ga bo'lish.
x=-\frac{2}{15} x=2
Tenglama yechildi.
5x+10+\left(3x-1\right)\times 16=5\left(x+2\right)\left(3x-1\right)
x qiymati -2,\frac{1}{3} qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 5\left(x+2\right)\left(3x-1\right)^{2} ga, 9x^{2}-6x+1,15x^{2}+25x-10,3x-1 ning eng kichik karralisiga ko‘paytiring.
5x+10+48x-16=5\left(x+2\right)\left(3x-1\right)
3x-1 ga 16 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
53x+10-16=5\left(x+2\right)\left(3x-1\right)
53x ni olish uchun 5x va 48x ni birlashtirish.
53x-6=5\left(x+2\right)\left(3x-1\right)
-6 olish uchun 10 dan 16 ni ayirish.
53x-6=\left(5x+10\right)\left(3x-1\right)
5 ga x+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
53x-6=15x^{2}+25x-10
5x+10 ga 3x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
53x-6-15x^{2}=25x-10
Ikkala tarafdan 15x^{2} ni ayirish.
53x-6-15x^{2}-25x=-10
Ikkala tarafdan 25x ni ayirish.
28x-6-15x^{2}=-10
28x ni olish uchun 53x va -25x ni birlashtirish.
28x-15x^{2}=-10+6
6 ni ikki tarafga qo’shing.
28x-15x^{2}=-4
-4 olish uchun -10 va 6'ni qo'shing.
-15x^{2}+28x=-4
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-15x^{2}+28x}{-15}=-\frac{4}{-15}
Ikki tarafini -15 ga bo‘ling.
x^{2}+\frac{28}{-15}x=-\frac{4}{-15}
-15 ga bo'lish -15 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{28}{15}x=-\frac{4}{-15}
28 ni -15 ga bo'lish.
x^{2}-\frac{28}{15}x=\frac{4}{15}
-4 ni -15 ga bo'lish.
x^{2}-\frac{28}{15}x+\left(-\frac{14}{15}\right)^{2}=\frac{4}{15}+\left(-\frac{14}{15}\right)^{2}
-\frac{28}{15} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{14}{15} olish uchun. Keyin, -\frac{14}{15} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{28}{15}x+\frac{196}{225}=\frac{4}{15}+\frac{196}{225}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{14}{15} kvadratini chiqarish.
x^{2}-\frac{28}{15}x+\frac{196}{225}=\frac{256}{225}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{4}{15} ni \frac{196}{225} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{14}{15}\right)^{2}=\frac{256}{225}
x^{2}-\frac{28}{15}x+\frac{196}{225} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{14}{15}\right)^{2}}=\sqrt{\frac{256}{225}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{14}{15}=\frac{16}{15} x-\frac{14}{15}=-\frac{16}{15}
Qisqartirish.
x=2 x=-\frac{2}{15}
\frac{14}{15} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}