Baholash
\frac{5}{504}\approx 0,009920635
Omil
\frac{5}{2 ^ {3} \cdot 3 ^ {2} \cdot 7} = 0,00992063492063492
Baham ko'rish
Klipbordga nusxa olish
\frac{1}{9}-\frac{1}{8}+\frac{-1}{7}+\frac{1}{6}
\frac{-1}{8} kasri manfiy belgini olib tashlash bilan -\frac{1}{8} sifatida qayta yozilishi mumkin.
\frac{8}{72}-\frac{9}{72}+\frac{-1}{7}+\frac{1}{6}
9 va 8 ning eng kichik umumiy karralisi 72 ga teng. \frac{1}{9} va \frac{1}{8} ni 72 maxraj bilan kasrlarga aylantirib oling.
\frac{8-9}{72}+\frac{-1}{7}+\frac{1}{6}
\frac{8}{72} va \frac{9}{72} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
-\frac{1}{72}+\frac{-1}{7}+\frac{1}{6}
-1 olish uchun 8 dan 9 ni ayirish.
-\frac{1}{72}-\frac{1}{7}+\frac{1}{6}
\frac{-1}{7} kasri manfiy belgini olib tashlash bilan -\frac{1}{7} sifatida qayta yozilishi mumkin.
-\frac{7}{504}-\frac{72}{504}+\frac{1}{6}
72 va 7 ning eng kichik umumiy karralisi 504 ga teng. -\frac{1}{72} va \frac{1}{7} ni 504 maxraj bilan kasrlarga aylantirib oling.
\frac{-7-72}{504}+\frac{1}{6}
-\frac{7}{504} va \frac{72}{504} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
-\frac{79}{504}+\frac{1}{6}
-79 olish uchun -7 dan 72 ni ayirish.
-\frac{79}{504}+\frac{84}{504}
504 va 6 ning eng kichik umumiy karralisi 504 ga teng. -\frac{79}{504} va \frac{1}{6} ni 504 maxraj bilan kasrlarga aylantirib oling.
\frac{-79+84}{504}
-\frac{79}{504} va \frac{84}{504} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{5}{504}
5 olish uchun -79 va 84'ni qo'shing.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}