k uchun yechish
k=2
Baham ko'rish
Klipbordga nusxa olish
k+3-5k\times 3=-\left(5k+15\right)
k qiymati -3,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 5k\left(k+3\right) ga, 5k,k+3,k ning eng kichik karralisiga ko‘paytiring.
k+3-15k=-\left(5k+15\right)
15 hosil qilish uchun 5 va 3 ni ko'paytirish.
k+3-15k=-5k-15
5k+15 teskarisini topish uchun har birining teskarisini toping.
k+3-15k+5k=-15
5k ni ikki tarafga qo’shing.
6k+3-15k=-15
6k ni olish uchun k va 5k ni birlashtirish.
6k-15k=-15-3
Ikkala tarafdan 3 ni ayirish.
6k-15k=-18
-18 olish uchun -15 dan 3 ni ayirish.
-9k=-18
-9k ni olish uchun 6k va -15k ni birlashtirish.
k=\frac{-18}{-9}
Ikki tarafini -9 ga bo‘ling.
k=2
2 ni olish uchun -18 ni -9 ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}