Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{1}{5}x-3=\frac{5}{10}x\left(x+1\right)
\frac{5}{10} hosil qilish uchun 5 va \frac{1}{10} ni ko'paytirish.
\frac{1}{5}x-3=\frac{1}{2}x\left(x+1\right)
\frac{5}{10} ulushini 5 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{1}{5}x-3=\frac{1}{2}xx+\frac{1}{2}x
\frac{1}{2}x ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{1}{5}x-3=\frac{1}{2}x^{2}+\frac{1}{2}x
x^{2} hosil qilish uchun x va x ni ko'paytirish.
\frac{1}{5}x-3-\frac{1}{2}x^{2}=\frac{1}{2}x
Ikkala tarafdan \frac{1}{2}x^{2} ni ayirish.
\frac{1}{5}x-3-\frac{1}{2}x^{2}-\frac{1}{2}x=0
Ikkala tarafdan \frac{1}{2}x ni ayirish.
-\frac{3}{10}x-3-\frac{1}{2}x^{2}=0
-\frac{3}{10}x ni olish uchun \frac{1}{5}x va -\frac{1}{2}x ni birlashtirish.
-\frac{1}{2}x^{2}-\frac{3}{10}x-3=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-\frac{3}{10}\right)±\sqrt{\left(-\frac{3}{10}\right)^{2}-4\left(-\frac{1}{2}\right)\left(-3\right)}}{2\left(-\frac{1}{2}\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -\frac{1}{2} ni a, -\frac{3}{10} ni b va -3 ni c bilan almashtiring.
x=\frac{-\left(-\frac{3}{10}\right)±\sqrt{\frac{9}{100}-4\left(-\frac{1}{2}\right)\left(-3\right)}}{2\left(-\frac{1}{2}\right)}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{10} kvadratini chiqarish.
x=\frac{-\left(-\frac{3}{10}\right)±\sqrt{\frac{9}{100}+2\left(-3\right)}}{2\left(-\frac{1}{2}\right)}
-4 ni -\frac{1}{2} marotabaga ko'paytirish.
x=\frac{-\left(-\frac{3}{10}\right)±\sqrt{\frac{9}{100}-6}}{2\left(-\frac{1}{2}\right)}
2 ni -3 marotabaga ko'paytirish.
x=\frac{-\left(-\frac{3}{10}\right)±\sqrt{-\frac{591}{100}}}{2\left(-\frac{1}{2}\right)}
\frac{9}{100} ni -6 ga qo'shish.
x=\frac{-\left(-\frac{3}{10}\right)±\frac{\sqrt{591}i}{10}}{2\left(-\frac{1}{2}\right)}
-\frac{591}{100} ning kvadrat ildizini chiqarish.
x=\frac{\frac{3}{10}±\frac{\sqrt{591}i}{10}}{2\left(-\frac{1}{2}\right)}
-\frac{3}{10} ning teskarisi \frac{3}{10} ga teng.
x=\frac{\frac{3}{10}±\frac{\sqrt{591}i}{10}}{-1}
2 ni -\frac{1}{2} marotabaga ko'paytirish.
x=\frac{3+\sqrt{591}i}{-10}
x=\frac{\frac{3}{10}±\frac{\sqrt{591}i}{10}}{-1} tenglamasini yeching, bunda ± musbat. \frac{3}{10} ni \frac{i\sqrt{591}}{10} ga qo'shish.
x=\frac{-\sqrt{591}i-3}{10}
\frac{3+i\sqrt{591}}{10} ni -1 ga bo'lish.
x=\frac{-\sqrt{591}i+3}{-10}
x=\frac{\frac{3}{10}±\frac{\sqrt{591}i}{10}}{-1} tenglamasini yeching, bunda ± manfiy. \frac{3}{10} dan \frac{i\sqrt{591}}{10} ni ayirish.
x=\frac{-3+\sqrt{591}i}{10}
\frac{3-i\sqrt{591}}{10} ni -1 ga bo'lish.
x=\frac{-\sqrt{591}i-3}{10} x=\frac{-3+\sqrt{591}i}{10}
Tenglama yechildi.
\frac{1}{5}x-3=\frac{5}{10}x\left(x+1\right)
\frac{5}{10} hosil qilish uchun 5 va \frac{1}{10} ni ko'paytirish.
\frac{1}{5}x-3=\frac{1}{2}x\left(x+1\right)
\frac{5}{10} ulushini 5 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{1}{5}x-3=\frac{1}{2}xx+\frac{1}{2}x
\frac{1}{2}x ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{1}{5}x-3=\frac{1}{2}x^{2}+\frac{1}{2}x
x^{2} hosil qilish uchun x va x ni ko'paytirish.
\frac{1}{5}x-3-\frac{1}{2}x^{2}=\frac{1}{2}x
Ikkala tarafdan \frac{1}{2}x^{2} ni ayirish.
\frac{1}{5}x-3-\frac{1}{2}x^{2}-\frac{1}{2}x=0
Ikkala tarafdan \frac{1}{2}x ni ayirish.
-\frac{3}{10}x-3-\frac{1}{2}x^{2}=0
-\frac{3}{10}x ni olish uchun \frac{1}{5}x va -\frac{1}{2}x ni birlashtirish.
-\frac{3}{10}x-\frac{1}{2}x^{2}=3
3 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
-\frac{1}{2}x^{2}-\frac{3}{10}x=3
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-\frac{1}{2}x^{2}-\frac{3}{10}x}{-\frac{1}{2}}=\frac{3}{-\frac{1}{2}}
Ikkala tarafini -2 ga ko‘paytiring.
x^{2}+\left(-\frac{\frac{3}{10}}{-\frac{1}{2}}\right)x=\frac{3}{-\frac{1}{2}}
-\frac{1}{2} ga bo'lish -\frac{1}{2} ga ko'paytirishni bekor qiladi.
x^{2}+\frac{3}{5}x=\frac{3}{-\frac{1}{2}}
-\frac{3}{10} ni -\frac{1}{2} ga bo'lish -\frac{3}{10} ga k'paytirish -\frac{1}{2} ga qaytarish.
x^{2}+\frac{3}{5}x=-6
3 ni -\frac{1}{2} ga bo'lish 3 ga k'paytirish -\frac{1}{2} ga qaytarish.
x^{2}+\frac{3}{5}x+\left(\frac{3}{10}\right)^{2}=-6+\left(\frac{3}{10}\right)^{2}
\frac{3}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{10} olish uchun. Keyin, \frac{3}{10} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{3}{5}x+\frac{9}{100}=-6+\frac{9}{100}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{10} kvadratini chiqarish.
x^{2}+\frac{3}{5}x+\frac{9}{100}=-\frac{591}{100}
-6 ni \frac{9}{100} ga qo'shish.
\left(x+\frac{3}{10}\right)^{2}=-\frac{591}{100}
x^{2}+\frac{3}{5}x+\frac{9}{100} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{3}{10}\right)^{2}}=\sqrt{-\frac{591}{100}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{3}{10}=\frac{\sqrt{591}i}{10} x+\frac{3}{10}=-\frac{\sqrt{591}i}{10}
Qisqartirish.
x=\frac{-3+\sqrt{591}i}{10} x=\frac{-\sqrt{591}i-3}{10}
Tenglamaning ikkala tarafidan \frac{3}{10} ni ayirish.