y uchun yechish
y=-8
y=2
Grafik
Baham ko'rish
Klipbordga nusxa olish
-8-4y=4\left(y-4\right)\left(y+2\right)\times \frac{1}{4}+4y-16
y qiymati -2,4 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 4\left(y-4\right)\left(y+2\right) ga, 4-y,4,y+2 ning eng kichik karralisiga ko‘paytiring.
-8-4y=\left(y-4\right)\left(y+2\right)+4y-16
1 hosil qilish uchun 4 va \frac{1}{4} ni ko'paytirish.
-8-4y=y^{2}-2y-8+4y-16
y-4 ga y+2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-8-4y=y^{2}+2y-8-16
2y ni olish uchun -2y va 4y ni birlashtirish.
-8-4y=y^{2}+2y-24
-24 olish uchun -8 dan 16 ni ayirish.
-8-4y-y^{2}=2y-24
Ikkala tarafdan y^{2} ni ayirish.
-8-4y-y^{2}-2y=-24
Ikkala tarafdan 2y ni ayirish.
-8-6y-y^{2}=-24
-6y ni olish uchun -4y va -2y ni birlashtirish.
-8-6y-y^{2}+24=0
24 ni ikki tarafga qo’shing.
16-6y-y^{2}=0
16 olish uchun -8 va 24'ni qo'shing.
-y^{2}-6y+16=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
y=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-1\right)\times 16}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, -6 ni b va 16 ni c bilan almashtiring.
y=\frac{-\left(-6\right)±\sqrt{36-4\left(-1\right)\times 16}}{2\left(-1\right)}
-6 kvadratini chiqarish.
y=\frac{-\left(-6\right)±\sqrt{36+4\times 16}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
y=\frac{-\left(-6\right)±\sqrt{36+64}}{2\left(-1\right)}
4 ni 16 marotabaga ko'paytirish.
y=\frac{-\left(-6\right)±\sqrt{100}}{2\left(-1\right)}
36 ni 64 ga qo'shish.
y=\frac{-\left(-6\right)±10}{2\left(-1\right)}
100 ning kvadrat ildizini chiqarish.
y=\frac{6±10}{2\left(-1\right)}
-6 ning teskarisi 6 ga teng.
y=\frac{6±10}{-2}
2 ni -1 marotabaga ko'paytirish.
y=\frac{16}{-2}
y=\frac{6±10}{-2} tenglamasini yeching, bunda ± musbat. 6 ni 10 ga qo'shish.
y=-8
16 ni -2 ga bo'lish.
y=-\frac{4}{-2}
y=\frac{6±10}{-2} tenglamasini yeching, bunda ± manfiy. 6 dan 10 ni ayirish.
y=2
-4 ni -2 ga bo'lish.
y=-8 y=2
Tenglama yechildi.
-8-4y=4\left(y-4\right)\left(y+2\right)\times \frac{1}{4}+4y-16
y qiymati -2,4 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 4\left(y-4\right)\left(y+2\right) ga, 4-y,4,y+2 ning eng kichik karralisiga ko‘paytiring.
-8-4y=\left(y-4\right)\left(y+2\right)+4y-16
1 hosil qilish uchun 4 va \frac{1}{4} ni ko'paytirish.
-8-4y=y^{2}-2y-8+4y-16
y-4 ga y+2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-8-4y=y^{2}+2y-8-16
2y ni olish uchun -2y va 4y ni birlashtirish.
-8-4y=y^{2}+2y-24
-24 olish uchun -8 dan 16 ni ayirish.
-8-4y-y^{2}=2y-24
Ikkala tarafdan y^{2} ni ayirish.
-8-4y-y^{2}-2y=-24
Ikkala tarafdan 2y ni ayirish.
-8-6y-y^{2}=-24
-6y ni olish uchun -4y va -2y ni birlashtirish.
-6y-y^{2}=-24+8
8 ni ikki tarafga qo’shing.
-6y-y^{2}=-16
-16 olish uchun -24 va 8'ni qo'shing.
-y^{2}-6y=-16
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-y^{2}-6y}{-1}=-\frac{16}{-1}
Ikki tarafini -1 ga bo‘ling.
y^{2}+\left(-\frac{6}{-1}\right)y=-\frac{16}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
y^{2}+6y=-\frac{16}{-1}
-6 ni -1 ga bo'lish.
y^{2}+6y=16
-16 ni -1 ga bo'lish.
y^{2}+6y+3^{2}=16+3^{2}
6 ni bo‘lish, x shartining koeffitsienti, 2 ga 3 olish uchun. Keyin, 3 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
y^{2}+6y+9=16+9
3 kvadratini chiqarish.
y^{2}+6y+9=25
16 ni 9 ga qo'shish.
\left(y+3\right)^{2}=25
y^{2}+6y+9 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(y+3\right)^{2}}=\sqrt{25}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y+3=5 y+3=-5
Qisqartirish.
y=2 y=-8
Tenglamaning ikkala tarafidan 3 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}