x uchun yechish
x=-\frac{15k^{2}}{4}-12k+13
k\neq 8
k uchun yechish (complex solution)
\left\{\begin{matrix}\\k=-\frac{2\sqrt{339-15x}}{15}-\frac{8}{5}\text{, }&\text{unconditionally}\\k=\frac{2\sqrt{339-15x}}{15}-\frac{8}{5}\text{, }&x\neq -323\end{matrix}\right,
k uchun yechish
\left\{\begin{matrix}k=\frac{2\sqrt{339-15x}}{15}-\frac{8}{5}\text{, }&x\neq -323\text{ and }x\leq \frac{113}{5}\\k=-\frac{2\sqrt{339-15x}}{15}-\frac{8}{5}\text{, }&x\leq \frac{113}{5}\end{matrix}\right,
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(k-8\right)^{2}=4\left(\left(2k+2\right)^{2}-\left(1-x\right)\right)
Tenglamaning ikkala tarafini 4\left(k-8\right)^{2} ga, 4,\left(8-k\right)^{2} ning eng kichik karralisiga ko‘paytiring.
k^{2}-16k+64=4\left(\left(2k+2\right)^{2}-\left(1-x\right)\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(k-8\right)^{2} kengaytirilishi uchun ishlating.
k^{2}-16k+64=4\left(4k^{2}+8k+4-\left(1-x\right)\right)
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2k+2\right)^{2} kengaytirilishi uchun ishlating.
k^{2}-16k+64=4\left(4k^{2}+8k+4-1+x\right)
1-x teskarisini topish uchun har birining teskarisini toping.
k^{2}-16k+64=4\left(4k^{2}+8k+3+x\right)
3 olish uchun 4 dan 1 ni ayirish.
k^{2}-16k+64=16k^{2}+32k+12+4x
4 ga 4k^{2}+8k+3+x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
16k^{2}+32k+12+4x=k^{2}-16k+64
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
32k+12+4x=k^{2}-16k+64-16k^{2}
Ikkala tarafdan 16k^{2} ni ayirish.
32k+12+4x=-15k^{2}-16k+64
-15k^{2} ni olish uchun k^{2} va -16k^{2} ni birlashtirish.
12+4x=-15k^{2}-16k+64-32k
Ikkala tarafdan 32k ni ayirish.
12+4x=-15k^{2}-48k+64
-48k ni olish uchun -16k va -32k ni birlashtirish.
4x=-15k^{2}-48k+64-12
Ikkala tarafdan 12 ni ayirish.
4x=-15k^{2}-48k+52
52 olish uchun 64 dan 12 ni ayirish.
4x=52-48k-15k^{2}
Tenglama standart shaklda.
\frac{4x}{4}=\frac{52-48k-15k^{2}}{4}
Ikki tarafini 4 ga bo‘ling.
x=\frac{52-48k-15k^{2}}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
x=-\frac{15k^{2}}{4}-12k+13
-15k^{2}-48k+52 ni 4 ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}