Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

1+3x\left(-2\right)=2x\times 3x+3x\left(-3\right)
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 3x ga ko'paytirish.
1-6x=2x\times 3x+3x\left(-3\right)
-6 hosil qilish uchun 3 va -2 ni ko'paytirish.
1-6x=2x^{2}\times 3+3x\left(-3\right)
x^{2} hosil qilish uchun x va x ni ko'paytirish.
1-6x=6x^{2}+3x\left(-3\right)
6 hosil qilish uchun 2 va 3 ni ko'paytirish.
1-6x=6x^{2}-9x
-9 hosil qilish uchun 3 va -3 ni ko'paytirish.
1-6x-6x^{2}=-9x
Ikkala tarafdan 6x^{2} ni ayirish.
1-6x-6x^{2}+9x=0
9x ni ikki tarafga qo’shing.
1+3x-6x^{2}=0
3x ni olish uchun -6x va 9x ni birlashtirish.
-6x^{2}+3x+1=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-3±\sqrt{3^{2}-4\left(-6\right)}}{2\left(-6\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -6 ni a, 3 ni b va 1 ni c bilan almashtiring.
x=\frac{-3±\sqrt{9-4\left(-6\right)}}{2\left(-6\right)}
3 kvadratini chiqarish.
x=\frac{-3±\sqrt{9+24}}{2\left(-6\right)}
-4 ni -6 marotabaga ko'paytirish.
x=\frac{-3±\sqrt{33}}{2\left(-6\right)}
9 ni 24 ga qo'shish.
x=\frac{-3±\sqrt{33}}{-12}
2 ni -6 marotabaga ko'paytirish.
x=\frac{\sqrt{33}-3}{-12}
x=\frac{-3±\sqrt{33}}{-12} tenglamasini yeching, bunda ± musbat. -3 ni \sqrt{33} ga qo'shish.
x=-\frac{\sqrt{33}}{12}+\frac{1}{4}
-3+\sqrt{33} ni -12 ga bo'lish.
x=\frac{-\sqrt{33}-3}{-12}
x=\frac{-3±\sqrt{33}}{-12} tenglamasini yeching, bunda ± manfiy. -3 dan \sqrt{33} ni ayirish.
x=\frac{\sqrt{33}}{12}+\frac{1}{4}
-3-\sqrt{33} ni -12 ga bo'lish.
x=-\frac{\sqrt{33}}{12}+\frac{1}{4} x=\frac{\sqrt{33}}{12}+\frac{1}{4}
Tenglama yechildi.
1+3x\left(-2\right)=2x\times 3x+3x\left(-3\right)
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 3x ga ko'paytirish.
1-6x=2x\times 3x+3x\left(-3\right)
-6 hosil qilish uchun 3 va -2 ni ko'paytirish.
1-6x=2x^{2}\times 3+3x\left(-3\right)
x^{2} hosil qilish uchun x va x ni ko'paytirish.
1-6x=6x^{2}+3x\left(-3\right)
6 hosil qilish uchun 2 va 3 ni ko'paytirish.
1-6x=6x^{2}-9x
-9 hosil qilish uchun 3 va -3 ni ko'paytirish.
1-6x-6x^{2}=-9x
Ikkala tarafdan 6x^{2} ni ayirish.
1-6x-6x^{2}+9x=0
9x ni ikki tarafga qo’shing.
1+3x-6x^{2}=0
3x ni olish uchun -6x va 9x ni birlashtirish.
3x-6x^{2}=-1
Ikkala tarafdan 1 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
-6x^{2}+3x=-1
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-6x^{2}+3x}{-6}=-\frac{1}{-6}
Ikki tarafini -6 ga bo‘ling.
x^{2}+\frac{3}{-6}x=-\frac{1}{-6}
-6 ga bo'lish -6 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{1}{2}x=-\frac{1}{-6}
\frac{3}{-6} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{1}{2}x=\frac{1}{6}
-1 ni -6 ga bo'lish.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{1}{6}+\left(-\frac{1}{4}\right)^{2}
-\frac{1}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{4} olish uchun. Keyin, -\frac{1}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{1}{6}+\frac{1}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{4} kvadratini chiqarish.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{11}{48}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{6} ni \frac{1}{16} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{1}{4}\right)^{2}=\frac{11}{48}
x^{2}-\frac{1}{2}x+\frac{1}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{11}{48}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{4}=\frac{\sqrt{33}}{12} x-\frac{1}{4}=-\frac{\sqrt{33}}{12}
Qisqartirish.
x=\frac{\sqrt{33}}{12}+\frac{1}{4} x=-\frac{\sqrt{33}}{12}+\frac{1}{4}
\frac{1}{4} ni tenglamaning ikkala tarafiga qo'shish.